论文标题

基于张量分解和多项式生根的无搜索DOA估计方法,用于发射光束横梁MIMO雷达

Search-free DOA Estimation Method Based on Tensor Decomposition and Polynomial Rooting for Transmit Beamspace MIMO Radar

论文作者

Xu, Feng, Yang, Xiaopeng, Lan, Tian

论文摘要

为了提高发射梁空格多输入多输出(MIMO)雷达的准确性和分辨率,提出了一种基于张量分解和多项式生根的无搜索方向(DOA)估计方法。在提出的方法中,首先设计了3阶张量,以基于多线性特性对接收的MIMO雷达信号进行建模。然后,通过张量分解,通过交替的最小二乘(ALS)算法获得了带有目标DOA信息的因子矩阵,随后将DOA估计转换为独立的最小化问题。通过利用传输转向载体的范德曼多德结构,构建了多项式函数,以通过多项式生根解决最小化问题。多项式系数中包含的因子矩阵可以被视为广义的侧齿canceller(GSC)中的块矩阵,因此,在传输梁图中,在靶标的方向上形成了独特的深空。所提出的方法可以获得DOA估计,而无需光谱搜索或传输BeamSpace矩阵设计,这与常规DOA估计技术不同。该方法的有效性通过模拟验证。

In order to improve the accuracy and resolution for transmit beamspace multiple-input multiple-output (MIMO) radar, a search-free direction-of-arrival (DOA) estimation method based on tensor decomposition and polynomial rooting is proposed. In the proposed method, a 3-order tensor is firstly designed to model the received signal of MIMO radar on the basis of the multi-linear property. Then, the factor matrix with target DOA information is obtained by the tensor decomposition via alternating least squares (ALS) algorithm, and subsequently the DOA estimation is converted into the independent minimization problem. By exploiting the Vandermonde structure of the transmit steering vector, a polynomial function is constructed to solve the minimization problem via polynomial rooting. The factor matrix contained in the coefficients of the polynomial can be regarded as a block matrix in the generalized sidelobe canceller (GSC), which accordingly forms a unique deep null in the direction of target in the transmit beampattern. The proposed method can obtain the DOA estimation without the requirements of spectrum searching or transmit beamspace matrix design, which is different from the conventional DOA estimation techniques. The effectiveness of the proposed method is verified by the simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源