论文标题
糖尿病足溃疡检测中的深度学习:全面评估
Deep Learning in Diabetic Foot Ulcers Detection: A Comprehensive Evaluation
论文作者
论文摘要
有大量的研究涉及计算机方法和技术,以检测和识别糖尿病足溃疡(DFUS),但缺乏对最先进的深度学习对象检测框架的系统比较。 DFUC2020为参与者提供了全面的数据集,其中包括2,000张培训图像和2,000张图像用于测试。本文总结了DFUC2020的结果,通过比较获胜团队提出的基于深度学习的算法:更快的R-CNN,三种更快的R-CNN变体和一种集合方法; Yolov3; yolov5;有效插图;以及一个新的级联注意网络。对于每种深度学习方法,我们提供了模型体系结构,用于培训的参数设置以及其他阶段的详细说明,包括预处理,数据增强和后处理。我们为每种方法提供全面的评估。所有方法都需要一个数据增强阶段,以增加可用于培训的图像数量和后处理阶段以删除误报。最佳性能是从可变形的卷积(更快的R-CNN的变体)中获得的,平均平均精度(MAP)为0.6940,F1得分为0.7434。最后,我们证明了基于不同深度学习方法的集合方法可以增强F1得分,但不能增强地图。
There has been a substantial amount of research involving computer methods and technology for the detection and recognition of diabetic foot ulcers (DFUs), but there is a lack of systematic comparisons of state-of-the-art deep learning object detection frameworks applied to this problem. DFUC2020 provided participants with a comprehensive dataset consisting of 2,000 images for training and 2,000 images for testing. This paper summarises the results of DFUC2020 by comparing the deep learning-based algorithms proposed by the winning teams: Faster R-CNN, three variants of Faster R-CNN and an ensemble method; YOLOv3; YOLOv5; EfficientDet; and a new Cascade Attention Network. For each deep learning method, we provide a detailed description of model architecture, parameter settings for training and additional stages including pre-processing, data augmentation and post-processing. We provide a comprehensive evaluation for each method. All the methods required a data augmentation stage to increase the number of images available for training and a post-processing stage to remove false positives. The best performance was obtained from Deformable Convolution, a variant of Faster R-CNN, with a mean average precision (mAP) of 0.6940 and an F1-Score of 0.7434. Finally, we demonstrate that the ensemble method based on different deep learning methods can enhanced the F1-Score but not the mAP.