论文标题

糖尿病足溃疡检测中的深度学习:全面评估

Deep Learning in Diabetic Foot Ulcers Detection: A Comprehensive Evaluation

论文作者

Yap, Moi Hoon, Hachiuma, Ryo, Alavi, Azadeh, Brungel, Raphael, Cassidy, Bill, Goyal, Manu, Zhu, Hongtao, Ruckert, Johannes, Olshansky, Moshe, Huang, Xiao, Saito, Hideo, Hassanpour, Saeed, Friedrich, Christoph M., Ascher, David, Song, Anping, Kajita, Hiroki, Gillespie, David, Reeves, Neil D., Pappachan, Joseph, O'Shea, Claire, Frank, Eibe

论文摘要

有大量的研究涉及计算机方法和技术,以检测和识别糖尿病足溃疡(DFUS),但缺乏对最先进的深度学习对象检测框架的系统比较。 DFUC2020为参与者提供了全面的数据集,其中包括2,000张培训图像和2,000张图像用于测试。本文总结了DFUC2020的结果,通过比较获胜团队提出的基于深度学习的算法:更快的R-CNN,三种更快的R-CNN变体和一种集合方法; Yolov3; yolov5;有效插图;以及一个新的级联注意网络。对于每种深度学习方法,我们提供了模型体系结构,用于培训的参数设置以及其他阶段的详细说明,包括预处理,数据增强和后处理。我们为每种方法提供全面的评估。所有方法都需要一个数据增强阶段,以增加可用于培训的图像数量和后处理阶段以删除误报。最佳性能是从可变形的卷积(更快的R-CNN的变体)中获得的,平均平均精度(MAP)为0.6940,F1得分为0.7434。最后,我们证明了基于不同深度学习方法的集合方法可以增强F1得分,但不能增强地图。

There has been a substantial amount of research involving computer methods and technology for the detection and recognition of diabetic foot ulcers (DFUs), but there is a lack of systematic comparisons of state-of-the-art deep learning object detection frameworks applied to this problem. DFUC2020 provided participants with a comprehensive dataset consisting of 2,000 images for training and 2,000 images for testing. This paper summarises the results of DFUC2020 by comparing the deep learning-based algorithms proposed by the winning teams: Faster R-CNN, three variants of Faster R-CNN and an ensemble method; YOLOv3; YOLOv5; EfficientDet; and a new Cascade Attention Network. For each deep learning method, we provide a detailed description of model architecture, parameter settings for training and additional stages including pre-processing, data augmentation and post-processing. We provide a comprehensive evaluation for each method. All the methods required a data augmentation stage to increase the number of images available for training and a post-processing stage to remove false positives. The best performance was obtained from Deformable Convolution, a variant of Faster R-CNN, with a mean average precision (mAP) of 0.6940 and an F1-Score of 0.7434. Finally, we demonstrate that the ensemble method based on different deep learning methods can enhanced the F1-Score but not the mAP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源