论文标题
关于简单液体中单分子动力学的物理机制
On the physical mechanisms underlying single molecule dynamics in simple liquids
论文作者
论文摘要
物理参数和与已发表的实验数据的比较表明,在简单的液体中:i)单分子尺度粘性力是由温度依赖的伦敦分散力产生的,ii)随着温度升高的粘度衰减反映了电子云压缩的粘度衰减,反映了电子云压缩和电子抑制的降低,由核煽动和较低的核电剂造成的较低的自发性,以及III的自我抑制作用。固态状声子频谱的末端。结果表明,碰撞诱导的电子云失真在单分子动力学中起决定性作用:i)电子云压缩产生短暂的排斥状态和单分子的自降压啤酒花,而ii)剪切诱导会产生粘度和单分子尺度粘液粘液。结果为非极性非金属液体中非平衡分子动力学提供了新的见解。
Physical arguments and comparisons with published experimental data suggest that in simple liquids: i) single-molecule-scale viscous forces are produced by temperature-dependent London dispersion forces, ii) viscosity decay with increasing temperature reflects electron cloud compression and attendant suppression of electron screening, produced by increased nuclear agitation, and iii) temperature-dependent self-diffusion is driven by a narrow band of phonon frequencies lying at the low-frequency end of the solid-state-like phonon spectrum. The results suggest that collision-induced electron cloud distortion plays a decisive role in single molecule dynamics: i) electron cloud compression produces short-lived repulsive states and single molecule, self-diffusive hops, while ii) shear-induced distortion generates viscosity and single-molecule-scale viscous drag. The results provide new insight into nonequilibrium molecular dynamics in nonpolar, nonmetallic liquids.