论文标题
硅弯曲肌肉:在纳米孔硅 - 多吡咯混合材料中巨型电化学驱动
Silicon Flexes Muscles: Giant Electrochemical Actuation in a Nanoporous Silicon-Polypyrrole Hybrid Material
论文作者
论文摘要
在硅中缺乏压电性,使得这种主流半导体的直接电力应用不可能。然而,硅力学的综合电控制将为片上精算师打开新的观点。在这里,我们将单晶硅中的晶圆尺度纳米质量与孔隙空间内的人造肌肉材料的聚合结合在一起,以合成一个复合材料,该复合材料显示水溶液中的宏观电体系。在压电驱动方面,电压 - 应变耦合比表现最好的陶瓷大3个数量级。我们将这种巨大的电动措施追溯到每平方厘米横截面1000亿纳米孔的一致动作,以及在单孔尺度上的潜在依赖性压力。非常小的操作电压(0.4-0.9 V)以及可持续性和生物相容性的碱材料使这种混合动力有望用于生物实施器应用。
The absence of piezoelectricity in silicon makes direct electro-mechanical applications of this mainstream semiconductor impossible. Integrated electrical control of the silicon mechanics, however, would open up new perspectives for on-chip actuorics. Here, we combine wafer-scale nanoporosity in single-crystalline silicon with polymerization of an artificial muscle material inside pore space to synthesize a composite that shows macroscopic electrostrain in aqueous electrolyte. The voltage-strain coupling is 3 orders of magnitude larger than the best-performing ceramics in terms of piezoelectric actuation. We trace this huge electroactuation to the concerted action of 100 billions of nanopores per square centimetre cross-section and to potential-dependent pressures of up to 150 atmospheres at the single-pore scale. The exceptionally small operation voltages (0.4-0.9 V) along with the sustainable and biocompatible base materials make this hybrid promising for bio-actuator applications.