论文标题

关于超紧凑型二进制脉冲星系统的可检测性

On the detectability of ultra-compact binary pulsar systems

论文作者

Pol, Nihan, McLaughlin, Maura, Lorimer, Duncan R., Garver-Daniels, Nathan

论文摘要

使用神经网络,我们整合了由于Pulsar的轨道运动与Pulsar种群合成套件\ psrpoppy \ \ psrpoppy \来解释多普勒涂抹的能力,以开发观察到的二元脉冲星人群的准确建模。作为第一个应用,我们表明,与质量对称的系统相比,这两个组件具有高度不等的质量的二元中子星系平均更易于检测。然后,我们研究超紧凑型($ 1.5 \,{\ rm min} \ leq p _ {\ rm b} \ leq 15 \,\ rm min $)中子星 - \ rm $)中子星 - 白色dwarf(ns-- wd)和双中性星(dns)系统,这些系统和范围范围是wastection the lassernna thatne thate tant and the the lasterna thannna thatna thannna nne inne nne interna Interferne internna conternna conternna。鉴于到目前为止无线电调查中这些系统的未检测,我们估计$ \ sim $ 1450和$ \ sim $ 1100 Ultra-Compact NS-WD和DNS系统的95 \%置信度上限分别向地球射击。我们还表明,使用时间域重新采样的范围为20秒至200 s的调查积分时间将最大化信噪比以及检测这些超紧凑型二元系统的概率。在所有大型无线电PULSAR调查中,目前正在Arecibo射电望远镜进行的售价$ \ sim $ 50---80 \%的机会使用当前的集成时间和$ 80--95 \%在未来几年内使用最佳集成时间来检测至少一个系统。

Using neural networks, we integrate the ability to account for Doppler smearing due to a pulsar's orbital motion with the pulsar population synthesis package \psrpoppy\ to develop accurate modeling of the observed binary pulsar population. As a first application, we show that binary neutron star systems where the two components have highly unequal mass are, on average, easier to detect than systems which are symmetric in mass. We then investigate the population of ultra-compact ($1.5 \, {\rm min} \leq P_{\rm b} \leq 15\,\rm min$) neutron star--white dwarf (NS--WD) and double neutron star (DNS) systems which are promising sources for the Laser Interferometer Space Antenna gravitational-wave detector. Given the non-detection of these systems in radio surveys thus far, we estimate a 95\% confidence upper limit of $\sim$1450 and $\sim$1100 ultra-compact NS--WD and DNS systems in the Milky Way that are beaming towards the Earth respectively. We also show that using survey integration times in the range 20~s to 200~s with time-domain resampling will maximize the signal-to-noise ratio as well as the probability of detection of these ultra-compact binary systems. Among all the large scale radio pulsar surveys, those that are currently being carried out at the Arecibo radio telescope have $\sim$50--80\% chance of detecting at least one of these systems using current integration integration times and $\sim$80--95\% using optimal integration times in the next several years.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源