论文标题
非最小规则表面上的符号同位素
Symplectic isotopy on non-minimal ruled surfaces
论文作者
论文摘要
我们证明了$ SYMP(x,ω)\ cap diff_0(x)$的稳定性,用于单点爆破非理性的统治表面并研究其拓扑结构。检测到$π_0的非平凡发电机[SYMP(x,ω)\ cap diff_0(x)] $与Lagrangian Dehn不同的twists。
We prove the stability of $Symp(X,ω)\cap Diff_0(X)$ for a one-point blow-up of irrational ruled surfaces and study their topological colimit. Non-trivial generators of $π_0[Symp(X,ω)\cap Diff_0(X)]$ that differ from Lagrangian Dehn twists are detected.