论文标题

图形神经网络,以对多晶材料的性质进行准确且可解释的预测

Graph Neural Networks for an Accurate and Interpretable Prediction of the Properties of Polycrystalline Materials

论文作者

Dai, Minyi, Demirel, Mehmet F., Liang, Yingyu, Hu, Jia-Mian

论文摘要

各种机器学习模型已被用来预测多晶材料的性质,但是尽管如此,尽管这种微观相互作用严重确定了宏观材料的特性,但它们都没有直接考虑相邻晶粒之间的物理相互作用。在这里,我们开发了一个图形神经网络(GNN)模型,用于获取多晶微观结构的嵌入,该模型不仅结合了单个晶粒的物理特征,还结合了它们的相互作用。然后,使用馈送前向神经网络将嵌入到目标属性。以多晶的磁结尾为例,我们表明,具有固定网络体系结构和超参数的单个GNN模型可以在一组显着不同的微观结构中的较低预测误差〜10%,并且可以在每种特征中量化每个特征在每种特征中的重要性,并量化了其MAGROSOSSOSSTICTICT of MAGROSOSSTRICTICT中的每种特征的重要性。因此,基于微观结构的GNN模型可以对多晶材料的性质进行准确且可解释的预测。

Various machine learning models have been used to predict the properties of polycrystalline materials, but none of them directly consider the physical interactions among neighboring grains despite such microscopic interactions critically determining macroscopic material properties. Here, we develop a graph neural network (GNN) model for obtaining an embedding of polycrystalline microstructure which incorporates not only the physical features of individual grains but also their interactions. The embedding is then linked to the target property using a feed-forward neural network. Using the magnetostriction of polycrystalline Tb0.3Dy0.7Fe2 alloys as an example, we show that a single GNN model with fixed network architecture and hyperparameters allows for a low prediction error of ~10% over a group of remarkably different microstructures as well as quantifying the importance of each feature in each grain of a microstructure to its magnetostriction. Such microstructure-graph-based GNN model therefore enables an accurate and interpretable prediction of the properties of polycrystalline materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源