论文标题

通过启用深层图像的剪切对象插入插入

Cut-and-Paste Object Insertion by Enabling Deep Image Prior for Reshading

论文作者

Bhattad, Anand, Forsyth, David A.

论文摘要

我们展示了如何将一个对象从一个图像插入到另一个图像,并在硬情况下获得现实的结果,在这种情况下,插入的对象的阴影与场景的阴影冲突。使用场景的照明模型渲染对象不起作用,因为这样做需要对象的几何和物质模型,这很难从单个图像中恢复。在本文中,我们介绍了一种方法,该方法可以纠正插入对象的阴影不一致,而无需几何和物理模型或环境图。我们的方法使用深度图像先验(DIP),训练有素,可以通过一致的图像分解推断损失来产生插入的对象的重新添加效果。来自DIP的最终图像的目的是具有(a)类似于切割和贴合的反照率的反照率,(b)与目标场景相似的阴影场,以及(c)与剪切和粘贴表面正常的阴影。结果是一个简单的过程,可以产生令人信服的插入对象的阴影。我们在定性和定量上对具有复杂表面特性的几个对象以及球形灯罩数据集进行了定量评估的疗效。我们的方法明显优于所有这些对象的图像协调(IH)基线。在用100多名用户的用户研究中,他们还胜过剪切和IH基线。

We show how to insert an object from one image to another and get realistic results in the hard case, where the shading of the inserted object clashes with the shading of the scene. Rendering objects using an illumination model of the scene doesn't work, because doing so requires a geometric and material model of the object, which is hard to recover from a single image. In this paper, we introduce a method that corrects shading inconsistencies of the inserted object without requiring a geometric and physical model or an environment map. Our method uses a deep image prior (DIP), trained to produce reshaded renderings of inserted objects via consistent image decomposition inferential losses. The resulting image from DIP aims to have (a) an albedo similar to the cut-and-paste albedo, (b) a similar shading field to that of the target scene, and (c) a shading that is consistent with the cut-and-paste surface normals. The result is a simple procedure that produces convincing shading of the inserted object. We show the efficacy of our method both qualitatively and quantitatively for several objects with complex surface properties and also on a dataset of spherical lampshades for quantitative evaluation. Our method significantly outperforms an Image Harmonization (IH) baseline for all these objects. They also outperform the cut-and-paste and IH baselines in a user study with over 100 users.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源