论文标题

通过投影张量规范的多部分纠缠检测

Multipartite entanglement detection via projective tensor norms

论文作者

Jivulescu, Maria Anastasia, Lancien, Cécilia, Nechita, Ion

论文摘要

我们根据将局部收缩应用于输入多部分状态,然后计算输出的投射张量规范的想法,介绍和研究一类纠缠标准。更确切地说,我们适用于混合量子状态,一种从Schatten类$ s_1 $到Euclidean Space $ \ ell_2 $的收缩产品的张量,我们称之为纠缠测试人员。我们为一般的纯量子和混合量子状态以及某些重要类别的对称量子状态分析了这种类型的标准在两部分和多部分系统上的性能。我们还表明,在此框架内可以查看以前研究的纠缠标准,例如重组和SIC POVM标准。这使我们可以通过在这两个标准的绩效之间得出系统关系,从而在尚昂,阿萨迪亚人,朱和古恩的两个积极猜想中回答。

We introduce and study a class of entanglement criteria based on the idea of applying local contractions to an input multipartite state, and then computing the projective tensor norm of the output. More precisely, we apply to a mixed quantum state a tensor product of contractions from the Schatten class $S_1$ to the Euclidean space $\ell_2$, which we call entanglement testers. We analyze the performance of this type of criteria on bipartite and multipartite systems, for general pure and mixed quantum states, as well as on some important classes of symmetric quantum states. We also show that previously studied entanglement criteria, such as the realignment and the SIC POVM criteria, can be viewed inside this framework. This allows us to answer in the positive two conjectures of Shang, Asadian, Zhu, and Gühne by deriving systematic relations between the performance of these two criteria.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源