论文标题
基于旋转的量子储层计算系统的信息处理能力
Information Processing Capacity of Spin-Based Quantum Reservoir Computing Systems
论文作者
论文摘要
可以利用复杂量子系统的动态行为进行信息处理。以此目的,最近将带有ISING网络的量子储层计算(QRC)作为经典储层计算的量子版本引入。反过来,水库计算是一种神经启发的机器学习技术,它包括利用动态系统来解决非线性和时间任务。我们用信息处理能力(IPC)表征了基于自旋的QRC模型的性能,该模型允许量化超出特定任务的动态系统的计算能力。解决了对输入注入频率,时间多路复用以及包括局部自旋测量以及相关性的不同测量值的影响。我们找到了最佳输入驾驶的条件,并为选择用于读数的输出变量提供了不同的替代方案。这项工作清楚地了解了用于储层计算的量子网络的计算能力。我们的结果从理论和实验的观点铺平了对QRC的未来研究的道路。
The dynamical behaviour of complex quantum systems can be harnessed for information processing. With this aim, quantum reservoir computing (QRC) with Ising spin networks was recently introduced as a quantum version of classical reservoir computing. In turn, reservoir computing is a neuro-inspired machine learning technique that consists in exploiting dynamical systems to solve nonlinear and temporal tasks. We characterize the performance of the spin-based QRC model with the Information Processing Capacity (IPC), which allows to quantify the computational capabilities of a dynamical system beyond specific tasks. The influence on the IPC of the input injection frequency, time multiplexing, and different measured observables encompassing local spin measurements as well as correlations, is addressed. We find conditions for an optimum input driving and provide different alternatives for the choice of the output variables used for the readout. This work establishes a clear picture of the computational capabilities of a quantum network of spins for reservoir computing. Our results pave the way to future research on QRC both from the theoretical and experimental points of view.