论文标题

基本结构的最小免费分辨率的形状理想$(n-2,2)$和$(d,d,1)$

Elementary construction of minimal free resolutions of the Specht ideals of shapes $(n-2,2)$ and $(d,d,1)$

论文作者

Shibata, Kosuke, Yanagawa, Kohji

论文摘要

对于$ n \ in \ mathbb {n} $的分区$λ$,让$ i^{\ rm sp}_λ$是$ r = k [x_1,\ ldots,x_n] $的理想,由所有Specht shape $λ$。我们假设$ {\ rm char}(k)= 0 $。然后,$ r/i^{\ rm sp} _ {(n-2,2)} $是戈伦斯坦,$ r/i^{\ rm sp} _ {(d,d,d,d,1)} $是cohen-macaulay ring lineare free分辨率。在本文中,我们构建了这些环的最低免费分辨率。 Berkesch Zamaere,Griffeth和Sam已经研究了$ r/i^{\ rm sp} _ {(n-d,d,d)} $的最低免费分辨率,它们也是Cohen-Macaulay,也是Cohen-Macaulay,使用了代表理论的高级技术。但是,我们仅使用SPECHT模块的基本理论,并明确描述差异图。

For a partition $λ$ of $n \in \mathbb{N}$, let $I^{\rm Sp}_λ$ be the ideal of $R=K[x_1,\ldots,x_n]$ generated by all Specht polynomials of shape $λ$. We assume that ${\rm char}(K)=0$. Then $R/I^{\rm Sp}_{(n-2,2)}$ is Gorenstein, and $R/I^{\rm Sp}_{(d,d,1)}$ is a Cohen-Macaulay ring with a linear free resolution. In this paper, we construct minimal free resolutions of these rings. Berkesch Zamaere, Griffeth, and Sam had already studied minimal free resolutions of $R/I^{\rm Sp}_{(n-d,d)}$, which are also Cohen-Macaulay, using heighly advanced technique of the representation theory. However we only use the basic theory of Specht modules, and explicitly describe the differential maps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源