论文标题

最大独立集的最佳低度硬度

Optimal Low-Degree Hardness of Maximum Independent Set

论文作者

Wein, Alexander S.

论文摘要

我们研究了在稀疏的Erdős-rényi随机图中找到具有$ n $ VERTICES和平均度$ D $的大型独立套件的算法任务。已知最大独立集在双重限制$ n \ to \ infty $中具有尺寸$ $(2 \ log d / d)n $,其次是$ d \ to \ infty $,但是最著名的多项式算法只能找到一组独立的半典型大小$ $(\ log log d / d / d / d d / d)n $。我们表明,一类低度多项式算法可以找到半大小的独立集,但没有更大的算法,这取决于Gamarnik,Jagannath和作者的结果。这概括了Rahman和Virág的早期工作,这证明了局部算法较弱的类似结果。

We study the algorithmic task of finding a large independent set in a sparse Erdős-Rényi random graph with $n$ vertices and average degree $d$. The maximum independent set is known to have size $(2 \log d / d)n$ in the double limit $n \to \infty$ followed by $d \to \infty$, but the best known polynomial-time algorithms can only find an independent set of half-optimal size $(\log d / d)n$. We show that the class of low-degree polynomial algorithms can find independent sets of half-optimal size but no larger, improving upon a result of Gamarnik, Jagannath, and the author. This generalizes earlier work by Rahman and Virág, which proved the analogous result for the weaker class of local algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源