论文标题

部分微分方程的概率模拟

Probabilistic simulation of partial differential equations

论文作者

Frank, Philipp, Enßlin, Torsten A.

论文摘要

微分方程的计算机仿真需要时间离散化,这抑制了确定确切解决方案的确定性。概率模拟通过不确定性量化考虑了这一点。概率模拟方案的构建可以通过概率数字视为贝叶斯过滤。高斯先前的基于高斯的过滤器,特别是高斯 - 马尔科夫先验,已成功应用于普通微分方程(ODE)的模拟,并引起可以有效解决的过滤问题。这项工作将这种方法扩展到受周期性边界条件下的部分微分方程(PDE),并利用时空中连续的高斯过程,以达到与ode设置的结构相似的贝叶斯过滤问题。在空间中,在时间和统计上具有统计均匀的过程的过程会导致概率光谱仿真方法,该方法允许有效实现。此外,贝叶斯的观点允许在信息场理论的背景下开发的方法(例如,估算与先前分布相关的功率谱的估计),将与PDE的解决方案共同估算。

Computer simulations of differential equations require a time discretization, which inhibits to identify the exact solution with certainty. Probabilistic simulations take this into account via uncertainty quantification. The construction of a probabilistic simulation scheme can be regarded as Bayesian filtering by means of probabilistic numerics. Gaussian prior based filters, specifically Gauss-Markov priors, have successfully been applied to simulation of ordinary differential equations (ODEs) and give rise to filtering problems that can be solved efficiently. This work extends this approach to partial differential equations (PDEs) subject to periodic boundary conditions and utilizes continuous Gaussian processes in space and time to arrive at a Bayesian filtering problem structurally similar to the ODE setting. The usage of a process that is Markov in time and statistically homogeneous in space leads to a probabilistic spectral simulation method that allows for an efficient realization. Furthermore, the Bayesian perspective allows the incorporation of methods developed within the context of information field theory such as the estimation of the power spectrum associated with the prior distribution, to be jointly estimated along with the solution of the PDE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源