论文标题

二次测量的快速信号恢复

Fast signal recovery from quadratic measurements

论文作者

Moscoso, Miguel, Novikov, Alexei, Papanicolaou, George, Tsogka, Chrysoula

论文摘要

我们提出了一种新的方法,可以从交叉数据中恢复稀疏信号。互相关自然出现在许多成像领域,例如光学,全息和地震干涉法。与使用线性测量值的稀疏信号恢复问题相比,未知现在是由未知信号的跨相关性形成的矩阵。因此,反转的瓶颈是二次增长的未知数。我们提出的方法的主要思想是通过仅恢复未知矩阵的对角线来降低问题的维度,该矩阵的尺寸随问题的大小线性增长。该方法的基石是使用有效的{\ em噪声收集器},该{\ em噪声收集器}吸收来自未知矩阵的非对角元素的数据,并且没有提供有关信号支持的额外信息。这会导致线性问题,其成本与使用线性测量的成本相似。我们的理论表明,当数据不太嘈杂时,提出的方法提供了确切的支持恢复,并且对于任何级别的噪声都没有误报。此外,我们的理论还表明,当使用交叉相关的数据时,可以恢复的稀疏度会增加,几乎与数据次数线性缩放。论文中提出的数值实验证实了这些发现。

We present a novel approach for recovering a sparse signal from cross-correlated data. Cross-correlations naturally arise in many fields of imaging, such as optics, holography and seismic interferometry. Compared to the sparse signal recovery problem that uses linear measurements, the unknown is now a matrix formed by the cross correlation of the unknown signal. Hence, the bottleneck for inversion is the number of unknowns that grows quadratically. The main idea of our proposed approach is to reduce the dimensionality of the problem by recovering only the diagonal of the unknown matrix, whose dimension grows linearly with the size of the problem. The keystone of the methodology is the use of an efficient {\em Noise Collector} that absorbs the data that come from the off-diagonal elements of the unknown matrix and that do not carry extra information about the support of the signal. This results in a linear problem whose cost is similar to the one that uses linear measurements. Our theory shows that the proposed approach provides exact support recovery when the data is not too noisy, and that there are no false positives for any level of noise. Moreover, our theory also demonstrates that when using cross-correlated data, the level of sparsity that can be recovered increases, scaling almost linearly with the number of data. The numerical experiments presented in the paper corroborate these findings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源