论文标题

斐波那契和tribonacci单词的自动复杂性

Automatic complexity of Fibonacci and Tribonacci words

论文作者

Kjos-Hanssen, Bjørn

论文摘要

对于复杂性函数$ c $,无限单词$ \ mathbf {x} $的下部和上部$ c $ - 复杂率是\ [ \ \ usewissline {c}(\ mathbf x)= \ liminf_ {n \ to \ infty} \ frac {c(\ mathbf {x} \ upharpoonRight n)} n,\ quad \ edline {c}(\ mathbf x)= \ limsup_ {n \ to \ infty} \ frac {c(\ mathbf {x} \ upharpoonRight n)} n \]。这里$ \ mathbf {x} \ upharpoonright n $是$ x $长度$ n $的前缀。我们考虑了$ c = \ mathrm {a_n} $,非确定自动复杂性。如果这些费率严格介于0到$ 1/2 $之间,我们将其称为中级。我们的主要结果是具有中间$ \ mathrm {a_n} $的单词存在,即。无限的斐波那契和Tribonacci词。

For a complexity function $C$, the lower and upper $C$-complexity rates of an infinite word $\mathbf{x}$ are \[ \underline{C}(\mathbf x)=\liminf_{n\to\infty} \frac{C(\mathbf{x}\upharpoonright n)}n,\quad \overline{C}(\mathbf x)=\limsup_{n\to\infty} \frac{C(\mathbf{x}\upharpoonright n)}n \] respectively. Here $\mathbf{x}\upharpoonright n$ is the prefix of $x$ of length $n$. We consider the case $C=\mathrm{A_N}$, the nondeterministic automatic complexity. If these rates are strictly between 0 and $1/2$, we call them intermediate. Our main result is that words having intermediate $\mathrm{A_N}$-rates exist, viz. the infinite Fibonacci and Tribonacci words.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源