论文标题
在北美和鹈鹕云配合物的团块中测试恒星形成缩放关系
Testing the star formation scaling relations in the clumps of the North American and Pelican cloud complexes
论文作者
论文摘要
调节分子云中恒星形成的过程仍未得到很好的了解。已经提出了各种恒星缩放关系来解释这一问题,通过制定恒星形成速率表面密度($ \ rmσ_{sfr} $)与基础气体表面密度($ \rmσ_{gas} $)之间的关系。在这项工作中,我们测试了各种恒星形成缩放关系,例如Kennicutt-Schmidt关系,体积恒星形成关系,轨道时间模型,跨度时间模型以及对北美和鹈鹕星云综合体以及与它们相关的冷团的多层次时间尺度模型。测量来自年轻恒星物体和CO测量的气态质量的恒星质量,我们估计平均$ \ rmσ_{sfr} $,每次自由下落时间的星形形成速率,以及恒星形成效率(SFE)的团块为1.5 $ \ rm m m {_ \ odot} $ {_ \ odot} 〜yr^yr^yr^yr^yr^yr^yr^kpc {-1} {-1。分别为2.0 $ \%$,而在整个NAN复合体中,值分别为0.6 $ \ rm m {_ \ odot} 〜yr^{ - 1} 〜kpc^{ - 2} $,0.0003和1.6 $ \%$。对于团块,我们注意到观察到的属性与$ \rmσ_{sfr} $和$ \rmσ_{gas} $之间的相关性以及$ \rmσ_{sfr} $和$ \rmσ_{gas {gas al} $ nife freefall Time和Orbital Time for gallactic for gallacticcliccclice coulds coldicclips colds colds colds colds coldscollmσ_{sfr} $和$ \ rm。同时,我们没有观察到与$ \rmσ_{gas} $每次交叉时间和多个自由下落时间的任何相关性。但是,即使我们在以前的情况下看到相关性,但所有模型在0.5 dex的一倍以内相互一致,并且由于输入可观察到的当前不确定性,因此无法区分这些模型。我们还测试了$ \rmσ_{sfr} $的变化与密集气体的变化,但是由于统计较低,我们的分析中可以看到弱相关性。
The processes which regulate the star-formation within molecular clouds are still not well understood. Various star-formation scaling relations have been proposed to explain this issue by formulating a relation between star-formation rate surface density ($\rm Σ_{SFR}$) and the underlying gas surface density ($\rm Σ_{gas}$). In this work, we test various star formation scaling relations, such as Kennicutt-Schmidt relation, volumetric star-formation relation, orbital time model, crossing time model, and multi free-fall time scale model towards the North American and Pelican Nebulae complexes and in cold clumps associated with them. Measuring stellar-mass from young stellar objects and gaseous mass from CO measurements, we estimated mean $\rm Σ_{SFR}$, star formation rate per free-fall time, and star formation efficiency (SFE) for clumps to be 1.5 $\rm M{_\odot}~yr^{-1}~kpc^{-2}$, 0.009, 2.0$\%$, respectively, while for the entire NAN complex the values are 0.6 $\rm M{_\odot}~yr^{-1}~kpc^{-2}$, 0.0003, and 1.6$\%$, respectively. For clumps, we notice that the observed properties are in line with the correlation obtained between $\rm Σ_{SFR}$ and $\rm Σ_{gas}$, and between $\rm Σ_{SFR}$ and $\rm Σ_{gas}$ per free-fall time and orbital time for Galactic clouds. At the same time, we do not observe any correlation with $\rm Σ_{gas}$ per crossing time and multi free-fall time. Even though we see correlations in former cases, however, all models agree with each other within a factor of 0.5 dex, and discriminating between these models is not possible due to the current uncertainties in the input observables. We also test the variation of $\rm Σ_{SFR}$ versus the dense gas, but due to low statistics, a weak correlation is seen in our analysis.