论文标题
薄:可投掷信息网络和野外面部表达识别的应用
THIN: THrowable Information Networks and Application for Facial Expression Recognition In The Wild
论文作者
论文摘要
对于许多机器学习问题,可以识别出外源变量,从而严重影响不同类别的外观,并且理想的分类器应不变。如果考虑面部表达识别(FER),则这种外源变量的一个例子是身份。在本文中,我们提出了双重外源/内源性表示。前者捕获了外源变量,而第二个则模拟了手头的任务(例如面部表达)。我们设计了一个预测层,该预测层使用由外源代表制作的树门控的深层合奏。我们还提出了外源性消除损失,以从内源代表中删除外源信息。因此,外源信息以可投掷方式使用两次,首先是目标任务的条件变量,其次是在内源性表示内创建不变性。我们称这种方法稀薄,代表可投掷信息网络。我们通过实验验证了可以识别出外源信息的几种情况,例如在大旋转下的数字识别和多个尺度上的形状识别。我们还将其应用于具有外源变量的身份。我们证明,在几个具有挑战性的数据集上,薄薄的方法明显优于最先进的方法。
For a number of machine learning problems, an exogenous variable can be identified such that it heavily influences the appearance of the different classes, and an ideal classifier should be invariant to this variable. An example of such exogenous variable is identity if facial expression recognition (FER) is considered. In this paper, we propose a dual exogenous/endogenous representation. The former captures the exogenous variable whereas the second one models the task at hand (e.g. facial expression). We design a prediction layer that uses a tree-gated deep ensemble conditioned by the exogenous representation. We also propose an exogenous dispelling loss to remove the exogenous information from the endogenous representation. Thus, the exogenous information is used two times in a throwable fashion, first as a conditioning variable for the target task, and second to create invariance within the endogenous representation. We call this method THIN, standing for THrowable Information Networks. We experimentally validate THIN in several contexts where an exogenous information can be identified, such as digit recognition under large rotations and shape recognition at multiple scales. We also apply it to FER with identity as the exogenous variable. We demonstrate that THIN significantly outperforms state-of-the-art approaches on several challenging datasets.