论文标题
分心的好处:使用逆关注来确定远程生命力测量
The Benefit of Distraction: Denoising Remote Vitals Measurements using Inverse Attention
论文作者
论文摘要
注意是计算机视觉中的一个强大概念。端到端的网络学会选择专注于图像或视频的区域,通常会表现出色。但是,其他图像区域虽然不一定包含感兴趣的信号,但可能包含有用的上下文。我们提出了一种方法,可以利用这样一种观念,即包含感兴趣信号的区域之间可以共享噪声的统计数据。我们的技术利用注意力面罩的倒数来产生噪声估计,然后用来证明时间观察。我们将其应用于基于相机的生理测量的任务。卷积注意网络用于了解视频的哪些区域包含生理信号并产生初步估计。通过在学到的注意力面罩的反向区域中使用像素强度,可以获得噪声估计,而这反过来又用于完善生理信号的估计值。我们在两个大型基准数据集上进行实验,并表明这种方法会产生最新的结果,从而将信噪比提高到5.8 dB,从而使心率和呼吸率估计误差降低30%,从而恢复了微妙的脉搏波形,并从RGB中恢复了Sixther脉冲波动,并从不重新验证的情况下将RGB概括为NIR视频。
Attention is a powerful concept in computer vision. End-to-end networks that learn to focus selectively on regions of an image or video often perform strongly. However, other image regions, while not necessarily containing the signal of interest, may contain useful context. We present an approach that exploits the idea that statistics of noise may be shared between the regions that contain the signal of interest and those that do not. Our technique uses the inverse of an attention mask to generate a noise estimate that is then used to denoise temporal observations. We apply this to the task of camera-based physiological measurement. A convolutional attention network is used to learn which regions of a video contain the physiological signal and generate a preliminary estimate. A noise estimate is obtained by using the pixel intensities in the inverse regions of the learned attention mask, this in turn is used to refine the estimate of the physiological signal. We perform experiments on two large benchmark datasets and show that this approach produces state-of-the-art results, increasing the signal-to-noise ratio by up to 5.8 dB, reducing heart rate and breathing rate estimation error by as much as 30%, recovering subtle pulse waveform dynamics, and generalizing from RGB to NIR videos without retraining.