论文标题

迈向算法公平的灵活框架

Towards a Flexible Framework for Algorithmic Fairness

论文作者

Hacker, Philip, Wiedemann, Emil, Zehlike, Meike

论文摘要

学者们越来越多地试图整合法律和技术见解,以打击AI系统中的偏见。近年来,已经提出了许多不同的确保算法决策系统非歧视的定义。在本文中,我们首先简要描述涉及算法歧视案例的欧盟法​​律框架。其次,我们提出了一种利用最佳运输的算法,以提供一个灵活的框架,以在不同的公平定义之间插值。第三,我们表明,在现实世界中实施算法公平干预措施的重要规范和法律挑战仍然存在。总体而言,本文旨在为寻求灵活的技术框架做出贡献,这些框架可以适应各种法律和规范性公平约束。

Increasingly, scholars seek to integrate legal and technological insights to combat bias in AI systems. In recent years, many different definitions for ensuring non-discrimination in algorithmic decision systems have been put forward. In this paper, we first briefly describe the EU law framework covering cases of algorithmic discrimination. Second, we present an algorithm that harnesses optimal transport to provide a flexible framework to interpolate between different fairness definitions. Third, we show that important normative and legal challenges remain for the implementation of algorithmic fairness interventions in real-world scenarios. Overall, the paper seeks to contribute to the quest for flexible technical frameworks that can be adapted to varying legal and normative fairness constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源