论文标题
里曼尼亚人彭罗斯(Penrose)与角落及其含义的僵化
Rigidity of Riemannian Penrose inequality with corners and its implications
论文作者
论文摘要
由局部黎曼彭罗斯(Riemannian Penrose)不平等中的刚性案例激励,我们表明,在正确指定的坐标中,在Riemannian Penrose不平等中获得最佳价值的合适奇异指标必然会平稳。如果应用于封闭空间Schwarzschild歧管中的地平线的高度曲面,则结果给出了具有相同平均值曲率的等距超出表面的刚度。
Motivated by the rigidity case in the localized Riemannian Penrose inequality, we show that suitable singular metrics attaining the optimal value in the Riemannian Penrose inequality is necessarily smooth in properly specified coordinates. If applied to hypersurfaces enclosing the horizon in a spatial Schwarzschild manifold, the result gives the rigidity of isometric hypersurfaces with the same mean curvature.