论文标题

通过动态激光雷德数据进行分割

Human Segmentation with Dynamic LiDAR Data

论文作者

Zhong, Tao, Kim, Wonjik, Tanaka, Masayuki, Okutomi, Masatoshi

论文摘要

连续的激光扫描组成动态3D序列,其中包含比单个帧更多的丰富信息。与图像和视频感知的发展历史相似,在激发了对静态3D数据感知的研究之后,动态3D序列感知开始看到。这项工作提出了一个时空神经网络,用于人体分割,并使用动态激光雷德点云进行分割。它以一系列深度图像作为输入。它具有两个分支结构,即空间分割分支和时间速度估计分支。速度估计分支旨在从输入序列捕获运动提示,然后将它们传播到另一个分支。因此,分割分支根据空间和时间特征分割人类。这两个分支是在生成的动态点云数据集上共同学习的。我们的作品填充了动态点云知觉的空白,并具有点云的球形表示,并达到了高精度。实验表明,时间特征的引入有益于动态点云的分割。

Consecutive LiDAR scans compose dynamic 3D sequences, which contain more abundant information than a single frame. Similar to the development history of image and video perception, dynamic 3D sequence perception starts to come into sight after inspiring research on static 3D data perception. This work proposes a spatio-temporal neural network for human segmentation with the dynamic LiDAR point clouds. It takes a sequence of depth images as input. It has a two-branch structure, i.e., the spatial segmentation branch and the temporal velocity estimation branch. The velocity estimation branch is designed to capture motion cues from the input sequence and then propagates them to the other branch. So that the segmentation branch segments humans according to both spatial and temporal features. These two branches are jointly learned on a generated dynamic point cloud dataset for human recognition. Our works fill in the blank of dynamic point cloud perception with the spherical representation of point cloud and achieves high accuracy. The experiments indicate that the introduction of temporal feature benefits the segmentation of dynamic point cloud.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源