论文标题
关于禁止的饱和问题$ 0 $ - $ 1 $一o
Saturation problems about forbidden $0$-$1$ submatrices
论文作者
论文摘要
$ 0 $ - $ 1 $矩阵$ m $对于$ 0 $ - $ 1 $矩阵$ p $如果$ m $不包含可以通过将一些$ 1 $的条目更改为$ 0 $条目,并将任意$ 0 $ 0 $ 0 $ 0 $在$ M $中引入$ M $ M $ M $ M $ M $。在$ 0 $ - $ 1 $矩阵的饱和问题中,我们有兴趣估计$ m \ times n $矩阵中的最低$ 1 $条目数量,该矩阵以$ p $饱和,在$ m $和$ n $方面。 换句话说,我们希望对$ p $的饱和功能进行良好的估计。最近,Brualdi和CAO在$ 0 $ - $ 1 $矩阵的背景下启动了饱和问题的研究。 我们将他们的工作扩展到多个方向。我们证明,在我们将自己限制为正方形饱和矩阵时,每$ 0 $ - $ 1 $禁止矩阵都具有$θ(1)$或$θ(n)$的饱和功能。然后,我们对Brualdi和CAO提出的有关$ J_K $的饱和功能提出的问题给出了部分答案,这是从身份矩阵$ i_k $中获得的,通过将第一行放置在最后一行之后。此外,我们展示了$ 5 \ times 5 $置换矩阵,其饱和函数从上面的固定常数界定。我们通过确定具有线性饱和功能的$ 0 $ - $ 1 $矩阵来补充这一结果。最后,就常数与线性二分法而言,我们完全解决了相关的半饱和问题。
A $0$-$1$ matrix $M$ is saturating for a $0$-$1$ matrix $P$ if $M$ does not contain a submatrix that can be turned into $P$ by changing some $1$ entries to $0$ entries, and changing an arbitrary $0$ to $1$ in $M$ introduces such a submatrix in $M$. In saturation problems for $0$-$1$ matrices we are interested in estimating the minimum number of $1$ entries in an $m \times n$ matrix that is saturating for $P$, in terms of $m$ and $n$. In other words, we wish to give good estimates for the saturation function of $P$. Recently, Brualdi and Cao initiated the study of saturation problems in the context of $0$-$1$ matrices. We extend their work in several directions. We prove that every $0$-$1$ forbidden matrix has its saturation function either in $Θ(1)$ or $Θ(n)$ in the case when we restrict ourselves to square saturating matrices. Then we give a partial answer to a question posed by Brualdi and Cao about the saturation function of $J_k$, which is obtained from the identity matrix $I_k$ by putting the first row after the last row. Furthermore, we exhibit a $5\times 5$ permutation matrix with the saturation function bounded from the above by a fixed constant. We complement this result by identifying large classes of $0$-$1$ matrices with linear saturation function. Finally, we completely resolve the related semisaturation problem as far as the constant vs. linear dichotomy is concerned.