论文标题
普遍的船员关系和对所有顺序的相称关系独立性的新颖展示
Generalized Crewther relation and a novel demonstration of the scheme independence of commensurate scale relations up to all orders
论文作者
论文摘要
在本文中,我们通过使用新建议的最大相关性原则(PMC)的单尺度方法($ c^{\ rm gls} $)对Adler函数($ D $)和GROSS-LLEWELLYN SMITH SUM Sum Sum Sums系数($ C^{\ rm gls} $)进行了详细研究。最终的GCR是与方案无关的,其由于未知的高阶项所致的剩余量表受到高度抑制。因此,可以通过与数据进行比较来实现QCD理论的精确检验,而无需重新归一化方案和规模歧义。此外,已经提出了对所有命令的相称关系的计划独立性的演示。作为第一次,采用了彩色近似方法来估计未知$ 5 _ {\ rm th} $ - 已知的四环扰动系列中的循环贡献。
In the paper, we make a detailed study on the generalized Crewther Relation (GCR) between the Adler function ($D$) and the Gross-Llewellyn Smith sum rules coefficient ($C^{\rm GLS}$) by using the newly suggested single-scale approach of the principle of maximum conformality (PMC). The resultant GCR is scheme-independent, whose residual scale dependence due to unknown higher-order terms are highly suppressed. Thus a precise test of QCD theory without renormalization scheme and scale ambiguities can be achieved by comparing with the data. Moreover, a demonstration of the scheme independence of commensurate scale relation up to all orders has been presented. And as the first time, the Pade approximation approach has been adopted for estimating the unknown $5_{\rm th}$-loop contributions from the known four-loop perturbative series.