论文标题

大规模维护和单位承诺:分散的子级别方法

Large-Scale Maintenance and Unit Commitment: A Decentralized Subgradient Approach

论文作者

Ramanan, Paritosh, Yildirim, Murat, Gebraeel, Nagi, Chow, Edmond

论文摘要

单位承诺(UC)是电力系统操作中的基本问题。当与生成维护结合使用时,联合优化问题会由于链接维护和UC决策的耦合约束而引起的重大计算挑战。显然,这些挑战随着网络的规模而增加。随着引入监测发电机健康和基于状况的维护(CBM)的传感器,这些挑战已被放大。基于ADMM的分散方法已经显示出解决大规模UC问题的希望,尤其是在垂直集成的电源系统中。但是,以当前形式,这些方法在考虑关节UC和CBM问题时无法提供相似的计算性能和可伸缩性。 本文提供了一个新型的分散优化框架,用于解决大规模,联合UC和CBM问题。我们的方法依赖于新颖的亚级别方法在暂时地将基于ADMM基于ADMM的沿维护范围沿ADMM的表述的各种子问题。通过有效利用多线程,我们的分散子级别方法可以提供出色的计算性能,并消除了移动传感器数据的必要性,从而减轻了隐私和安全问题。使用大规模测试案例的实验,我们表明我们的框架可以提供高达50倍的速度,而不是在不影响溶液质量的情况下进行的各种最先进的基准测试。

Unit Commitment (UC) is a fundamental problem in power system operations. When coupled with generation maintenance, the joint optimization problem poses significant computational challenges due to coupling constraints linking maintenance and UC decisions. Obviously, these challenges grow with the size of the network. With the introduction of sensors for monitoring generator health and condition-based maintenance(CBM), these challenges have been magnified. ADMM-based decentralized methods have shown promise in solving large-scale UC problems, especially in vertically integrated power systems. However, in their current form, these methods fail to deliver similar computational performance and scalability when considering the joint UC and CBM problem. This paper provides a novel decentralized optimization framework for solving large-scale, joint UC and CBM problems. Our approach relies on the novel use of the subgradient method to temporally decouple various subproblems of the ADMM-based formulation of the joint problem along the maintenance horizon. By effectively utilizing multithreading, our decentralized subgradient approach delivers superior computational performance and eliminates the need to move sensor data thereby alleviating privacy and security concerns. Using experiments on large scale test cases, we show that our framework can provide a speedup of upto 50x as compared to various state of the art benchmarks without compromising on solution quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源