论文标题
使用老虎发射多相银河风的框架
A Framework for Multiphase Galactic Wind Launching using TIGRESS
论文作者
论文摘要
银河流出的密度,温度和速度变化至少与它们起源的多相,湍流的星际介质(ISM)一样大。我们已经使用老虎框架进行了一套parsec分辨率的数值模拟,其中出现由于超新星(SNE)与恒星形成ISM之间的相互作用而出现。流出的气体的特征是两个不同的热相,凉爽(t <10^4 K)和热(t> 10^6 k),大多数由凉爽相携带,大多数能量和大多数能量和新注射的金属由热相携带。这两个组件的流出速度均具有广泛的分布,尤其是对于冷气,这意味着根据光环电位的不同,逃逸材料的一部分都不同。在老虎结果的情况下,我们为质量,动量,能量和金属载荷的联合概率密度函数(PDFS)开发了直接的分析公式,作为流速速度和声速中的分布。模型PDF仅具有两个参数,SFR表面密度σ_SFR和ISM的金属性,并在σ_Sfr〜(10^{ - 4},1)M_SUN/KPC^2/yr上完全捕获原始Tigress模拟PDF的行为。通过解决的模拟采用PDF将使基于理论预测而不是经验调整的风速和温度(以及总负载因子)实现Galaxy形成子网格模型实现。这是将老虎和其他高分辨率模拟的进步纳入未来宇宙学水动力学和半分析星系形成模型中的关键步骤。我们发布了一个Python软件包来原型制作我们的模型并简化其实现。
Galactic outflows have density, temperature, and velocity variations at least as large as that of the multiphase, turbulent interstellar medium (ISM) from which they originate. We have conducted a suite of parsec-resolution numerical simulations using the TIGRESS framework, in which outflows emerge as a consequence of interaction between supernovae (SNe) and the star-forming ISM. The outflowing gas is characterized by two distinct thermal phases, cool (T<10^4 K) and hot (T>10^6 K), with most mass carried by the cool phase and most energy and newly-injected metals carried by the hot phase. Both components have a broad distribution of outflow velocity, and especially for cool gas this implies a varying fraction of escaping material depending on the halo potential. Informed by the TIGRESS results, we develop straightforward analytic formulae for the joint probability density functions (PDFs) of mass, momentum, energy, and metal loading as distributions in outflow velocity and sound speed. The model PDFs have only two parameters, SFR surface density Σ_SFR and the metallicity of the ISM, and fully capture the behavior of the original TIGRESS simulation PDFs over Σ_SFR~(10^{-4},1)M_sun/kpc^2/yr. Employing PDFs from resolved simulations will enable galaxy formation subgrid model implementations with wind velocity and temperature (as well as total loading factors) that are based on theoretical predictions rather than empirical tuning. This is a critical step to incorporate advances from TIGRESS and other high-resolution simulations in future cosmological hydrodynamics and semi-analytic galaxy formation models. We release a python package to prototype our model and to ease its implementation.