论文标题
用量子纠缠改善冷原子传感器:前景和挑战
Improving cold-atom sensors with quantum entanglement: Prospects and challenges
论文作者
论文摘要
在冷原子实验中已经生成和验证了量子纠缠,并用于使原子互化测量值低于Shot-Noise极限。但是,当前的最新冷原子设备可利用可分离(即未进入)原子状态。这个观点提出了一个问题:从当前最新的设备提供了无法实现的新传感功能的意义上,纠缠可以有效地改善感冒原子传感器吗?我们在精确的冷原子感测,专注于时钟和惯性传感器上,简要回顾了最新的,确定纠缠可能带给这些设备的潜在好处,以及需要克服的挑战才能实现这些好处。我们的调查显示了在冷原子系统中产生量学上使用的纠缠的方法,注意它们的相对优势和缺点,并评估其对接近中等量量子量子增强的冷原子传感的前景。
Quantum entanglement has been generated and verified in cold-atom experiments and used to make atom-interferometric measurements below the shot-noise limit. However, current state-of-the-art cold-atom devices exploit separable (i.e. unentangled) atomic states. This Perspective piece asks the question: can entanglement usefully improve cold-atom sensors, in the sense that it gives new sensing capabilities unachievable with current state-of-the-art devices? We briefly review the state-of-the-art in precision cold-atom sensing, focussing on clocks and inertial sensors, identifying the potential benefits entanglement could bring to these devices, and the challenges that need to be overcome to realize these benefits. We survey demonstrated methods of generating metrologically-useful entanglement in cold-atom systems, note their relative strengths and weaknesses, and assess their prospects for near-to-medium term quantum-enhanced cold-atom sensing.