论文标题

同构性一个Kähler-ricci solitons下的Heisenberg Group Action和相关指标

Cohomogeneity one Kähler-Ricci solitons under a Heisenberg group action and related metrics

论文作者

Maschler, Gideon, Ream, Robert

论文摘要

我们表明,在复杂尺寸$ m $中,几乎复杂的结构的整合性在几乎荒谬的度量标准的情况下与$ m(m-1)$方程式在涉及我们所谓的剪切操作员的情况下相当。受此启发的启发,我们为Kähler指标提供了ANSATZ $ M> 1 $,其中最多只能使用这些剪切方程的$ M-1 $。 ANSATZ中梯度Kähler-ricci孤子的方程是框架依赖性PDE,它专门针对额外假设下的ODE。解决后一个系统的指标包括一类限制类别的指标,我们发现在$(2M-1)$ - 维度的Heisenberg Group的作用下,它们完全扩展了梯度Kähler-ricci solitons,以及一些不完整的稳定孤子。我们检查了以前的Ricci孤子子的曲率特性和渐近性。在我们提出的另一个特殊情况下,我们以$ M = 2 $为例,这是一类更通用类型的完整指标,我们称之为渐变的Kähler-ricci偏斜词,这是Euclidean Plane Group Action下的同时性。本文继续研究[MR,AM2]。

We show that integrability of an almost complex structure in complex dimension $m$ is equivalent, in the presence of an almost hermitian metric, to $m(m-1)$ equations involving what we call shear operators. Inspired by this, we give an ansatz for Kähler metrics in dimension $m>1$, for which at most $m-1$ of these shear equations are non-trivial. The equations for gradient Kähler-Ricci solitons in this ansatz are frame dependent PDEs, which specialize to ODEs under extra assumptions. Metrics solving the latter system include a restricted class of cohomogeneity one metrics, and we find among them complete expanding gradient Kähler-Ricci solitons under the action of the $(2m-1)$-dimensional Heisenberg group, and some incomplete steady solitons. We examine curvature properties and asymptotics for the former Ricci solitons. In another special case of the ansatz we present, for $m=2$, a class of complete metrics of a more general type which we call gradient Kähler-Ricci skew-solitons, which are cohomogeneity one under the Euclidean plane group action. This paper continues research started in [MR, AM2].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源