论文标题
高雷诺数湍流边界层中的速度衍生物。第一部分:耗散和能量平衡
Velocity derivatives in a high Reynolds number turbulent boundary layer. Part I: Dissipation and Energy Balance
论文作者
论文摘要
使用LMFL边界层功能中的SPIV进行了实验,以确定估计湍流动能的平均耗散率所需的所有衍生力矩,$ \ varepsilon =2ν\ langle s_ {ij} s_ {ij} s_ {ij} {ij} \ rangle $ s_ $ \ langle〜 \ rangle $表示合奏平均值。还测量了全平均变形率张量的所有矩,以及第一,第二和第三波动速度矩,除了涉及压力的速度矩。雷诺数为$re_θ= 7500 $或$re_τ= 2300 $。结果在三篇单独的论文中呈现。第一篇论文(第I部分)介绍了测得的平均耗散,$ \ varepsilon $和包含它的衍生力矩。它将结果与\ cite {balint91,honkan97}的早期测量值进行了比较,在较低的雷诺数上,在可比较的雷诺数上以平面通道流量DNS的新结果进行了比较。然后,它使用结果来扩展和评估重叠区域中所有数量的\ cite {george97b,wosnik00}的理论预测。特别感兴趣的是,$ \ varepsilon^+\ propto {y^+}^{ - 1} $用于流向同质流量和几乎无法区分的功率定律,$ \ varepsilon \ propto {y^+}^+}^{γ-1} $,用于边界层。尽管雷诺数适中,但预测似乎是正确的。它还预测并确认,运输矩对重叠区域的能量平衡的贡献,$ \ partial \ langle -pv/ρ-q^2 v/2 v/2 \ rangle/\ partial y $的行为相似。一个直接的结果是,这些术语的通常涡流粘度模型不能正确。第二篇论文第二部分详细研究了速度衍生物的统计特征。 Spiv方法论的细节在第三部分中,因为它主要是实验者感兴趣的。
An experiment was performed using SPIV in the LMFL boundary layer facility to determine all the derivative moments needed to estimate the average dissipation rate of the turbulence kinetic energy, $\varepsilon = 2 ν\langle s_{ij}s_{ij} \rangle$ where $s_{ij}$ is the fluctuating strain-rate and $\langle~\rangle$ denotes ensemble averages. Also measured were all the moments of the full average deformation rate tensor, as well as all of the first, second and third fluctuating velocity moments except those involving pressure. The Reynolds number was $Re_θ= 7500$ or $Re_τ= 2300$. The results are presented in three separate papers. This first paper (Part I) presents the measured average dissipation, $\varepsilon$ and the derivative moments comprising it. It compares the results to the earlier measurements of \cite{balint91,honkan97} at lower Reynolds numbers and a new results from a plane channel flow DNS at comparable Reynolds number. It then uses the results to extend and evaluate the theoretical predictions of \cite{george97b,wosnik00} for all quantities in the overlap region. Of special interest is the prediction that $\varepsilon^+ \propto {y^+}^{-1}$ for streamwise homogeneous flows and a nearly indistinguishable power law, $\varepsilon \propto {y^+}^{γ-1}$, for boundary layers. In spite of the modest Reynolds number, the predictions seem to be correct. It also predicts and confirms that the transport moment contribution to the energy balance in the overlap region, $\partial \langle - pv /ρ- q^2 v/2 \rangle/ \partial y$ behaves similarly. An immediate consequence is that the usual eddy viscosity model for these terms cannot be correct. The second paper, Part II, examines in detail the statistical character of the velocity derivatives. The details of the SPIV methodology is in Part III, since it will primarily be of interest to experimentalists.