论文标题
深度学习中不确定性校准的固定激活
Stationary Activations for Uncertainty Calibration in Deep Learning
论文作者
论文摘要
我们引入了一个新的非线性神经网络激活函数系列,该家族模仿了高斯工艺中广泛使用的Matérn家族引起的特性(GP)模型。该类跨越了各种均方体可不同程度的一系列本地固定模型。在网络由一个无限宽的隐藏层组成的情况下,我们显示了指向相应GP模型的明确链接。在无限平稳性的极限下,Matérn家族会导致RBF内核,在这种情况下,我们恢复了RBF激活。 Matérn激活功能与GP模型中的同行具有类似的吸引力,我们证明了本地平稳性属性以及有限的均值可差度,表明贝叶斯深度学习任务中的良好性能和不确定性校准。特别是,局部平稳性有助于校准分布(OOD)的不确定性。我们在分类和回归基准和雷达发射机分类任务上演示了这些属性。
We introduce a new family of non-linear neural network activation functions that mimic the properties induced by the widely-used Matérn family of kernels in Gaussian process (GP) models. This class spans a range of locally stationary models of various degrees of mean-square differentiability. We show an explicit link to the corresponding GP models in the case that the network consists of one infinitely wide hidden layer. In the limit of infinite smoothness the Matérn family results in the RBF kernel, and in this case we recover RBF activations. Matérn activation functions result in similar appealing properties to their counterparts in GP models, and we demonstrate that the local stationarity property together with limited mean-square differentiability shows both good performance and uncertainty calibration in Bayesian deep learning tasks. In particular, local stationarity helps calibrate out-of-distribution (OOD) uncertainty. We demonstrate these properties on classification and regression benchmarks and a radar emitter classification task.