论文标题

第一个星系周围的磁化:不同的田间播种过程对星系形成的影响

Magnetogenesis around the first galaxies: the impact of different field seeding processes on galaxy formation

论文作者

Garaldi, Enrico, Pakmor, Rüdiger, Springel, Volker

论文摘要

我们研究电荷段之前的电荷隔离产生的磁场的演变,在电离时期的电离方面及其对星系形成的影响。我们将这种磁性播种过程与Biermann电池,Supernovae的注入以及Redshift $ Z \ GTRSIM127 $的施加种子场进行了比较。使用基于Auriga Galaxy形成模型的一套自洽的宇宙学和缩放模拟,我们确定所有机制都会产生同样影响星系形成的银河磁场,并且在$ z \ syssimsim1.5 $上几乎无法区分。前者与观察到的值兼容,而后者与种子依赖性红移的气体金属性相关。低密度气体和光环以下依赖种子的质量阈值保留对初始磁场的记忆。我们产生合成的法拉第旋转测量图,表明它们有可能限制播种过程的潜力,尽管目前的观察值还不够敏感。我们的结果表明,原始种子场的临时假设 - 广泛用于银河形成模拟但不确定的物理起源 - 可以用物理动机的机制代替,用于磁化,对银河系特性的影响可忽略不计。此外,在电离界面前产生的磁场看起来非常相似,但比Biermann电池产生的磁场弱。因此,在两种机制都活跃的现实情况下,与后者相比,前者可以忽略不计。最后,我们的结果强调,高红移宇宙是我们了解磁场生成的富有成果的测试场。

We study the evolution of magnetic fields generated by charge segregation ahead of ionization fronts during the Epoch of Reionization, and their effects on galaxy formation. We compare this magnetic seeding process with the Biermann battery, injection from supernovae, and an imposed seed field at redshift $z\gtrsim127$. Using a suite of self-consistent cosmological and zoom-in simulations based on the Auriga galaxy-formation model, we determine that all mechanisms produce galactic magnetic fields that equally affect galaxy formation, and are nearly indistinguishable at $z\lesssim1.5$. The former is compatible with observed values, while the latter is correlated with the gas metallicity below a seed-dependent redshift. Low-density gas and haloes below a seed-dependent mass threshold retain memory of the initial magnetic field. We produce synthetic Faraday rotation measure maps, showing that they have the potential to constrain the seeding process, although current observations are not yet sensitive enough. Our results imply that the ad-hoc assumption of a primordial seed field - widely used in galaxy formation simulations but of uncertain physical origin - can be replaced by physically-motivated mechanisms for magnetogenesis with negligible impact on galactic properties. Additionally, magnetic fields generated ahead of ionization fronts appear very similar but weaker than those produced by the Biermann battery. Hence, in a realistic scenario where both mechanisms are active, the former will be negligible compared to the latter. Finally, our results highlight that the high-redshift Universe is a fruitful testing ground for our understanding of magnetic fields generation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源