论文标题

基于偏好的批次和顺序教学

Preference-Based Batch and Sequential Teaching

论文作者

Mansouri, Farnam, Chen, Yuxin, Vartanian, Ara, Zhu, Xiaojin, Singla, Adish

论文摘要

算法机械教学研究教师与学习者之间的相互作用,教师选择了旨在教授目标假设的标签示例。为了降低教学的复杂性,已经提出了几种批处理设置(例如,最差的,递归,基于偏好,基于偏好的模型)和顺序设置(例如,基于本地偏好模型)的几种教学模型和复杂性度量。为了更好地了解这些模型之间的联系,我们开发了一个新颖的框架,该框架通过偏好功能$σ$捕获教学过程。在我们的框架中,每个函数$σ\ inσ$都会引起一对教师对以$ td(σ)$的教学复杂性。我们表明,上述教学模型等于偏好功能的特定类型/家族。我们分析了与优先函数的不同家族相关的教学复杂性参数$ td(σ)$的几种属性,例如,与$ TD(σ)$相对于不相关域的假设类别的VC维度和添加性/次级添加性的VC维度进行了比较。最后,我们确定了在VC维度中诱导具有教学复杂性线性的新型顺序模型家族的偏好函数:这与批处理模型的最著名复杂性结果相反,批处理模型在VC维度上是二次的。

Algorithmic machine teaching studies the interaction between a teacher and a learner where the teacher selects labeled examples aiming at teaching a target hypothesis. In a quest to lower teaching complexity, several teaching models and complexity measures have been proposed for both the batch settings (e.g., worst-case, recursive, preference-based, and non-clashing models) and the sequential settings (e.g., local preference-based model). To better understand the connections between these models, we develop a novel framework that captures the teaching process via preference functions $Σ$. In our framework, each function $σ\in Σ$ induces a teacher-learner pair with teaching complexity as $TD(σ)$. We show that the above-mentioned teaching models are equivalent to specific types/families of preference functions. We analyze several properties of the teaching complexity parameter $TD(σ)$ associated with different families of the preference functions, e.g., comparison to the VC dimension of the hypothesis class and additivity/sub-additivity of $TD(σ)$ over disjoint domains. Finally, we identify preference functions inducing a novel family of sequential models with teaching complexity linear in the VC dimension: this is in contrast to the best-known complexity result for the batch models, which is quadratic in the VC dimension.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源