论文标题

张力下线性聚合物的拓扑解剖

Topological disentanglement of linear polymers under tension

论文作者

Caraglio, Michele, Marcone, Boris, Baldovin, Fulvio, Orlandini, Enzo, Stella, Attilio L.

论文摘要

当圆环结达到张力下的半灵性聚合物的末端时,我们会开发出对拓扑解剖的理论描述。这些包括腐烂成更简单的结和完全打结。交叉数的数量最少和最小的结轮廓长度是拓扑不变的,在模型中起着关键作用。交叉表现为沿链条扩散的颗粒,以及在链末端的适当边界条件的应用,解释了结。从粒子数量及其位置开始,合适的规则允许重建结上的结的类型和位置。我们的理论通过相应的分子动力学模拟进行了广泛的基准测试,结果显示了模拟与模型的理论预测之间的显着一致性。

We develop a theoretical description of the topological disentanglement occurring when torus knots reach the ends of a semi-flexible polymer under tension. These include decays into simpler knots and total unknotting. The minimal number of crossings and the minimal knot contour length are the topological invariants playing a key role in the model. The crossings behave as particles diffusing along the chain and the application of appropriate boundary conditions at the ends of the chain accounts for the knot disentanglement. Starting from the number of particles and their positions, suitable rules allow reconstructing the type and location of the knot moving on the chain. Our theory is extensively benchmarked with corresponding Molecular Dynamics simulations and the results show a remarkable agreement between the simulations and the theoretical predictions of the model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源