论文标题

在分布式声感应数据中进行表面波鉴定的深度学习

Deep Learning for Surface Wave Identification in Distributed Acoustic Sensing Data

论文作者

Dumont, Vincent, Tribaldos, Verónica Rodríguez, Ajo-Franklin, Jonathan, Wu, Kesheng

论文摘要

诸如汽车和火车之类的移动载荷是地震波的非常有用的来源,可以使用环境噪声地震学技术来分析地震波以检索地下材料的地震速度的信息。这些信息对于各种应用,例如近距离表面,地震危险评估和地下水监测等各种应用。但是,为了使此类过程快速收敛,应选择具有适当噪声能量的数据段。分布式声传感(DAS)是一种新型的传感技术,可以在数十公里以很高的空间和时间分辨率中获取这些数据。使用DAS技术时,一个主要的挑战是生产的大量数据,从而提出了重大的大数据挑战,以找到有用能量的区域。在这项工作中,我们通过整合在数据探索阶段中获得的物理知识,然后深入监督学习,以识别由人为活性产生的“有用”相干的表面波,这是通过人为活性产生的“有用的”连贯的表面波,这是一种对这些记录有用的,对地球物理成像有用的一类地震波。数据探索和训练是在DAS测量的130 〜GB(GB)上进行的。使用并行计算,我们能够在不到30分钟的时间内推断另外170 〜GB的数据(或相当于10天的录音)。我们的方法提供了可解释的模式,描述了地面人类活动与埋入传感器的相互作用。

Moving loads such as cars and trains are very useful sources of seismic waves, which can be analyzed to retrieve information on the seismic velocity of subsurface materials using the techniques of ambient noise seismology. This information is valuable for a variety of applications such as geotechnical characterization of the near-surface, seismic hazard evaluation, and groundwater monitoring. However, for such processes to converge quickly, data segments with appropriate noise energy should be selected. Distributed Acoustic Sensing (DAS) is a novel sensing technique that enables acquisition of these data at very high spatial and temporal resolution for tens of kilometers. One major challenge when utilizing the DAS technology is the large volume of data that is produced, thereby presenting a significant Big Data challenge to find regions of useful energy. In this work, we present a highly scalable and efficient approach to process real, complex DAS data by integrating physics knowledge acquired during a data exploration phase followed by deep supervised learning to identify "useful" coherent surface waves generated by anthropogenic activity, a class of seismic waves that is abundant on these recordings and is useful for geophysical imaging. Data exploration and training were done on 130~Gigabytes (GB) of DAS measurements. Using parallel computing, we were able to do inference on an additional 170~GB of data (or the equivalent of 10 days' worth of recordings) in less than 30 minutes. Our method provides interpretable patterns describing the interaction of ground-based human activities with the buried sensors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源