论文标题

Prophetnet-Ads:在赞助搜索引擎中的生成检索模型的临近策略

ProphetNet-Ads: A Looking Ahead Strategy for Generative Retrieval Models in Sponsored Search Engine

论文作者

Qi, Weizhen, Gong, Yeyun, Yan, Yu, Jiao, Jian, Shao, Bo, Zhang, Ruofei, Li, Houqiang, Duan, Nan, Zhou, Ming

论文摘要

在赞助的搜索引擎中,最近提出了生成检索模型,以挖掘用户输入查询的相关广告关键字。生成检索模型会在目标库前缀树(TRIE)的路径上通过令牌生成输出令牌,该路径保证了所有生成的输出都是合法的,并且由目标库涵盖。在实际使用中,我们发现了由Trie受限的搜索长度引起的几个典型问题。在本文中,我们分析了这些问题,并提出了一种名为Prophetnet-Ads的生成检索模型的展望策略。 Prophetnet-Ads通过直接优化Trie受约束的搜索空间来提高检索能力。我们从实际赞助的搜索引擎构建了一个数据集,并进行实验以分析不同的生成检索模型。与最近提出的基于TRIE的LSTM生成检索模型相比,我们的单个模型结果和综合结果分别以15.58 \%和18.8 \%的比例改善了光束尺寸5。案例研究进一步证明了这些问题如何被Prophetnet-ADS清楚地缓解。

In a sponsored search engine, generative retrieval models are recently proposed to mine relevant advertisement keywords for users' input queries. Generative retrieval models generate outputs token by token on a path of the target library prefix tree (Trie), which guarantees all of the generated outputs are legal and covered by the target library. In actual use, we found several typical problems caused by Trie-constrained searching length. In this paper, we analyze these problems and propose a looking ahead strategy for generative retrieval models named ProphetNet-Ads. ProphetNet-Ads improves the retrieval ability by directly optimizing the Trie-constrained searching space. We build a dataset from a real-word sponsored search engine and carry out experiments to analyze different generative retrieval models. Compared with Trie-based LSTM generative retrieval model proposed recently, our single model result and integrated result improve the recall by 15.58\% and 18.8\% respectively with beam size 5. Case studies further demonstrate how these problems are alleviated by ProphetNet-Ads clearly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源