论文标题
热模式识别的最终限制
Ultimate Limits of Thermal Pattern Recognition
论文作者
论文摘要
量子通道歧视(QCD)提出了量子信息理论中的基本任务,并在量子阅读,照明,数据阅读等方面进行了关键应用。多个量子通道歧视的扩展已成为最近的重点,以表征与量子增强的歧视性方案相关的潜在量子优势。在本文中,我们将热成像研究为环境定位任务,其中热图像被建模为具有相同传播率的高斯相不敏感通道的集合,并且像素根据背景(冷)或目标(温暖)热通道具有特性。通过自适应量子协议的传送伸展,我们对抽象,二进制热图像空间的模式分类的精度得出了最终限制,并表明可以使用量子增强的策略来提供高于已知最佳经典策略的量子优势。研究和讨论可以获得可以获得优势的环境条件和必要资源。然后,我们从数值上研究了量子增强统计分类器的使用,其中量子传感器与机器学习图像分类方法结合使用。这项工作证明了在低损失制度中的明确优势,激发了对未来量子技术的短距离热成像和检测技术的使用。
Quantum Channel Discrimination (QCD) presents a fundamental task in quantum information theory, with critical applications in quantum reading, illumination, data-readout and more. The extension to multiple quantum channel discrimination has seen a recent focus to characterise potential quantum advantage associated with quantum enhanced discriminatory protocols. In this paper, we study thermal imaging as an environment localisation task, in which thermal images are modelled as ensembles of Gaussian phase insensitive channels with identical transmissivity, and pixels possess properties according to background (cold) or target (warm) thermal channels. Via the teleportation stretching of adaptive quantum protocols, we derive ultimate limits on the precision of pattern classification of abstract, binary thermal image spaces, and show that quantum enhanced strategies may be used to provide significant quantum advantage over known optimal classical strategies. The environmental conditions and necessary resources for which advantage may be obtained are studied and discussed. We then numerically investigate the use of quantum enhanced statistical classifiers, in which quantum sensors are used in conjunction with machine learning image classification methods. Proving definitive advantage in the low loss regime, this work motivates the use of quantum enhanced sources for short-range thermal imaging and detection techniques for future quantum technologies.