论文标题

在人工智能上建立智能网格 - 一个真实的示例

Build Smart Grids on Artificial Intelligence -- A Real-world Example

论文作者

You, Shutang, Liu, Yilu, Li, Hongyu, Liu, Shengyuan, Sun, Kaiqi, Zhao, Yinfeng, Xiao, Huangqing, Dong, Jiaojiao, Su, Yu, Wang, Weikang, Cui, Yi

论文摘要

通过部署各种传感器,电源网格数据正在大大进行。电网中的大数据为应用人工智能技术提供了巨大的机会,以提高弹性和可靠性。本文介绍了基于人工智能的多个现实世界应用,以提高电网情境意识和弹性。这些应用包括事件识别,惯性估计,事件位置和幅度估计,数据认证,控制和稳定性评估。这些应用程序是在一个名为FNET-GRIDEYE的现实世界系统上运行的,该系统是一个广阔的测量网络,可以说是收集电网大数据的世界大型网络物理系统。与传统方法和完成的新任务相比,这些应用程序表现出更好的性能,这些任务是无法使用常规技术实现的。这些令人鼓舞的结果表明,将电网大数据和人工智能相结合可以发现并捕获电网数据及其稳定性指数之间的非线性相关性,并有可能实现许多可以显着提高电网弹性的高级应用程序。

Power grid data are going big with the deployment of various sensors. The big data in power grids creates huge opportunities for applying artificial intelligence technologies to improve resilience and reliability. This paper introduces multiple real-world applications based on artificial intelligence to improve power grid situational awareness and resilience. These applications include event identification, inertia estimation, event location and magnitude estimation, data authentication, control, and stability assessment. These applications are operating on a real-world system called FNET-GridEye, which is a wide-area measurement network and arguably the world-largest cyber-physical system that collects power grid big data. These applications showed much better performance compared with conventional approaches and accomplished new tasks that are impossible to realized using conventional technologies. These encouraging results demonstrate that combining power grid big data and artificial intelligence can uncover and capture the non-linear correlation between power grid data and its stabilities indices and will potentially enable many advanced applications that can significantly improve power grid resilience.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源