论文标题
无界域中分数反应扩散方程的有效光谱 - 盖尔金方法
An efficient spectral-Galerkin method for fractional reaction-diffusion equations in unbounded domains
论文作者
论文摘要
在这项工作中,我们应用了一种快速准确的数值方法来求解无界域中的分数反应扩散方程。通过在空间中使用傅立叶样光谱方法,该方法可以有效地处理分数拉普拉斯操作员,从而导致分数laplacian的完全对角线表示。为了完全离散基础的非线性反应扩散系统,我们建议使用基于ETDRK4的准确时间行进方案。提出了数值示例,以说明该方法的有效性。
In this work, we apply a fast and accurate numerical method for solving fractional reaction-diffusion equations in unbounded domains. By using the Fourier-like spectral approach in space, this method can effectively handle the fractional Laplace operator, leading to a fully diagonal representation of the fractional Laplacian. To fully discretize the underlying nonlinear reaction-diffusion systems, we propose to use an accurate time marching scheme based on ETDRK4. Numerical examples are presented to illustrate the effectiveness of the proposed method.