论文标题

Krylov子空间回收用于不断发展的结构

Krylov Subspace Recycling for Evolving Structures

论文作者

Bolten, Matthias, de Sturler, Eric, Hahn, Camilla

论文摘要

Krylov子空间回收是一种强大的工具,用于求解一系列大型稀疏线性系统,这些系统变化缓慢。在PDE约束形状的优化中,它们自然而然地出现,因为只需要几百个或更多的优化步骤,而几何形状只有很小的变化。但是,在这种情况下,应用Krylov子空间回收可能很困难。随着几何形状的发展,有限的元素网格也会随之而来,尤其是在需要重新划分的情况下。结果,系统中的代数自由度的数量可能会从一个优化步骤变为下一个,并且随之而来的是有限元系统矩阵的大小。网格的变化还会导致矩阵的结构变化。在重新捕捉的情况下,即使几何形状仅变化一点,相应的网格也可能与前一个网格有很大差异。这样可以防止线性系统矩阵(本文中回收的焦点)的近似不变子空间的任何直接映射。其他选定子空间也会出现类似的问题。我们提出了一种通用网格的算法,以绘制系统矩阵的近似不变子空间,以使其在当前优化步骤中以上的优化步骤映射系统矩阵的近似不变子空间。我们利用该映射从系数向量将其在网格上与有限元网格上函数近似的有限元函数。此外,我们开发了Krylov-Schur算法的直接温暖启动[G.W. Stewart,Siam J. Matrix肛门。应用。 23,2001]在需要新的优化步骤开始时,请改善近似不变子空间。我们通过针对特定的网格划分技术的几项概念研究证明了方法的有效性。

Krylov subspace recycling is a powerful tool for solving long series of large, sparse linear systems that change slowly. In PDE constrained shape optimization, these appear naturally, as hundreds or more optimization steps are needed with only small changes in the geometry. In this setting, however, applying Krylov subspace recycling can be difficult. As the geometry evolves, so does the finite element mesh, especially if re-meshing is needed. As a result, the number of algebraic degrees of freedom in the system may change from one optimization step to the next, and with it the size of the finite element system matrix. Changes in the mesh also lead to structural changes in the matrices. In the case of remeshing, even if the geometry changes only a little, the corresponding mesh might differ substantially from the previous one. This prevents any straightforward mapping of the approximate invariant subspace of the linear system matrix (the focus of recycling in this paper) from one step to the next; similar problems arise for other selected subspaces. We present an algorithm for general meshes to map an approximate invariant subspace of the system matrix for the previous optimization step to an approximate invariant subspace of the system matrix for the current optimization step. We exploit the map from coefficient vectors to finite element functions on the mesh combined with function approximation on the finite element mesh. In addition, we develop a straightforward warm-start adaptation of the Krylov-Schur algorithm [G.W. Stewart, SIAM J. Matrix Anal. Appl. 23, 2001] to improve the approximate invariant subspace at the start of a new optimization step if needed. We demonstrate the effectiveness of our approach numerically with several proof of concept studies for a specific meshing technique.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源