论文标题
IRS辅助MMWave系统的联合电力分配和用户协会优化
Joint Power Allocation and User Association Optimization for IRS-Assisted mmWave Systems
论文作者
论文摘要
智能反射表面(IRS)是在未来通信系统中构建可编程无线环境的潜在技术。在本文中,我们考虑了IRS辅助的多基础站(Multi-BS)多用户毫米波(MMWave)下行链路通信系统,利用IRS将MMWave信号覆盖扩展到盲点。考虑到IRS对Multi-BS MMWave系统中用户关联的影响,我们通过共同优化IRS,Power Analocation和用户关联的无源范围来提出总和率最大化问题。这导致了一个棘手的非凸问题,为解决该问题,我们提出了一种计算负担得起的迭代算法,利用交替优化,顺序分数编程(SFP)和前向反向拍卖(FRA)。特别是,通过使用SFP方法,通过使用标准凸优化方法来求解功率分配,通过使用SFP方法来优化IRS的无源波束形成,并且用户关联是通过基于网络优化的FRA算法来处理的。仿真结果表明,与基准相比,该算法可以实现显着的性能增长,例如,与基准相比,它可以提供高达175%的总和率,而与放大和前向继电器相比,它可以提供高达175%的总和。
Intelligent reflect surface (IRS) is a potential technology to build programmable wireless environment in future communication systems. In this paper, we consider an IRS-assisted multi-base station (multi-BS) multi-user millimeter wave (mmWave) downlink communication system, exploiting IRS to extend mmWave signal coverage to blind spots. Considering the impact of IRS on user association in multi-BS mmWave systems, we formulate a sum rate maximization problem by jointly optimizing passive beamforming at IRS, power allocation and user association. This leads to an intractable nonconvex problem, for which to tackle we propose a computationally affordable iterative algorithm, capitalizing on alternating optimization, sequential fractional programming (SFP) and forward-reverse auction (FRA). In particular, passive beamforming at IRS is optimized by utilizing the SFP method, power allocation is solved through means of standard convex optimization method, and user association is handled by the network optimization based FRA algorithm. Simulation results demonstrate that the proposed algorithm can achieve significant performance gains, e.g., it can provide up to 175% higher sum rate compared with the benchmark and 140% higher energy efficiency compared with amplify-and-forward relay.