论文标题
在几个弹射对象检测中恢复负面信息
Restoring Negative Information in Few-Shot Object Detection
论文作者
论文摘要
最近,很少有学习的学习是深度学习领域的新挑战:与传统的方法不同,这些方法具有大量标记数据的训练深度神经网络(DNN),它要求在新课程上概括DNN的新课程,而这些班级很少。几次学习的最新进展主要集中在图像分类上,而在本文中,我们专注于对象检测。几次射击对象检测中的初始探索倾向于通过在丢弃该类别的负面建议的同时使用图像中的图像中的积极建议来模拟分类方案。但是,否定性,尤其是艰苦的负面因素,对于将太空学习嵌入几次射击对象检测至关重要。在本文中,我们通过引入一个新的负面和积极代表性的度量学习框架和具有负面代表和正面代表的新推理方案来恢复少量对象检测的负面信息。我们在最近的几个射击管道上的重新仪上,并使用几个新模块来编码负面信息,以用于培训和测试。对Imagenet-Loc和Pascal VOC的广泛实验显示我们的方法基本上改善了最新的少数对象检测解决方案。我们的代码可在https://github.com/yang-yk/np-repmet上找到。
Few-shot learning has recently emerged as a new challenge in the deep learning field: unlike conventional methods that train the deep neural networks (DNNs) with a large number of labeled data, it asks for the generalization of DNNs on new classes with few annotated samples. Recent advances in few-shot learning mainly focus on image classification while in this paper we focus on object detection. The initial explorations in few-shot object detection tend to simulate a classification scenario by using the positive proposals in images with respect to certain object class while discarding the negative proposals of that class. Negatives, especially hard negatives, however, are essential to the embedding space learning in few-shot object detection. In this paper, we restore the negative information in few-shot object detection by introducing a new negative- and positive-representative based metric learning framework and a new inference scheme with negative and positive representatives. We build our work on a recent few-shot pipeline RepMet with several new modules to encode negative information for both training and testing. Extensive experiments on ImageNet-LOC and PASCAL VOC show our method substantially improves the state-of-the-art few-shot object detection solutions. Our code is available at https://github.com/yang-yk/NP-RepMet.