论文标题

从生物启发的推进器中无监督的聚类和涡旋唤醒的性能预测

Unsupervised Clustering and Performance Prediction of Vortex Wakes from Bio-inspired Propulsors

论文作者

Calvet, Alejandro G., Dave, Mukul, Franck, Jennifer A.

论文摘要

开发了一种无监督的机器学习策略,以自动将生物启发的推进器的涡流唤醒归因于类似的推进推力和效率指标的组。通过改变频率,重振幅和俯仰振幅,通过计算流体动力学以$ 121 $唯一的运动学来模拟倾斜和箔纸。使用雷诺平均的Navier-Stokes(RANS)模型来模拟以$ re = 10^6 $的振荡箔的模拟流,从而计算推进效率,推力系数和不稳定的涡旋唤醒签名。使用成对的皮尔逊相关性,发现曲线数最大的影响推力系数,而相对攻击角度(由中风和最大值都定义为对推进效率的影响最大。接下来,各种运动学会自动使用涡流量中的涡旋足迹自动聚集成不同的组。开发了卷积自动编码器,以将Vortex Wake Images降低到其最重要的特征,而K-Means ++算法则执行聚类。通过将簇与推力与推进效率图进行比较来评估结果,该图证实了相似性能指标的唤醒成功聚集在一起。这种自动聚类有可能在尾流和推进模式下识别复杂的涡度模式,这不容易从传统的分类方法中辨别出来。

An unsupervised machine learning strategy is developed to automatically cluster the vortex wakes of bio-inspired propulsors into groups of similar propulsive thrust and efficiency metrics. A pitching and heaving foil is simulated via computational fluid dynamics with $121$ unique kinematics by varying the frequency, heaving amplitude, and pitching amplitude. A Reynolds averaged Navier-Stokes (RANS) model is employed to simulate the flow over the oscillating foils at $Re=10^6$, computing the propulsive efficiency, thrust coefficient and the unsteady vorticity wake signature. Using a pairwise Pearson correlation it is found that the Strouhal number most strongly influences the thrust coefficient, whereas the relative angle of attack, defined by both the mid-stroke and maximum have the most significant impact on propulsive efficiency. Next, the various kinematics are automatically clustered into distinct groups exclusively using the vorticity footprint in the wake. A convolutional autoencoder is developed to reduce vortex wake images to their most significant features, and a k-means++ algorithm performs the clustering. The results are assessed by comparing clusters to a thrust versus propulsive efficiency map, which confirms that wakes of similar performance metrics are successfully clustered together. This automated clustering has the potential to identify complex vorticity patterns in the wake and modes of propulsion not easily discerned from traditional classification methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源