论文标题

无监督的深度学习,用于使用视网膜眼镜图像的年龄相关黄斑变性等级

Unsupervised deep learning for grading of age-related macular degeneration using retinal fundus images

论文作者

Yellapragada, Baladitya, Hornhauer, Sascha, Snyder, Kiersten, Yu, Stella, Yiu, Glenn

论文摘要

许多疾病是根据容易发生偏见的人类定义的专栏进行分类的。监督的神经网络可以自动化视网膜底面图像的分级,但需要进行劳动密集型注释,并仅限于特定的训练有素的任务。在这里,我们使用与年龄相关的眼病研究(AREDS)中的眼底照片采用了一个无监督的网络,以非参数实例歧视(NPID)歧视(NPID)。我们的无监督算法在不同的AMD分类方案中表现出多功能性,而无需再进行重新培训,并且实现了与受监督的网络和人类眼科医生相媲美的不平衡精确度,并在分类高级或引用的AMD上,或者在4步AMD AMD严重程度尺度上。探索网络行为揭示了与疾病相关的眼底特征,这些特征促进了预测并揭示了更颗粒状的人类定义的AMD严重性方案的敏感性,以通过眼科医生和神经网络进行错误分类。重要的是,无监督的学习实现了对AMD特征(例如地理萎缩)以及脉络膜,玻璃体和晶状体的其他眼部表型的无偏见的发现,例如人类LabEls尚未预先定义的脉络膜表型。

Many diseases are classified based on human-defined rubrics that are prone to bias. Supervised neural networks can automate the grading of retinal fundus images, but require labor-intensive annotations and are restricted to the specific trained task. Here, we employed an unsupervised network with Non-Parametric Instance Discrimination (NPID) to grade age-related macular degeneration (AMD) severity using fundus photographs from the Age-Related Eye Disease Study (AREDS). Our unsupervised algorithm demonstrated versatility across different AMD classification schemes without retraining, and achieved unbalanced accuracies comparable to supervised networks and human ophthalmologists in classifying advanced or referable AMD, or on the 4-step AMD severity scale. Exploring the networks behavior revealed disease-related fundus features that drove predictions and unveiled the susceptibility of more granular human-defined AMD severity schemes to misclassification by both ophthalmologists and neural networks. Importantly, unsupervised learning enabled unbiased, data-driven discovery of AMD features such as geographic atrophy, as well as other ocular phenotypes of the choroid, vitreous, and lens, such as visually-impairing cataracts, that were not pre-defined by human labels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源