论文标题

嵌入的空间:非单线图,手性及其概括

Spaces of embeddings: Nonsingular bilinear maps, chirality, and their generalizations

论文作者

Frick, Florian, Harrison, Michael

论文摘要

考虑到一个空间X,我们通过X的三角形组合研究X嵌入到$ \ Mathbb {r}^d $中的拓扑拓扑。我们给出了一个简单的组合公式,以用于上限的上限,以使球体的最大维度具有抗虫映射到嵌入嵌入的空间。该结果总结并扩展了有关复合物的不舒适性的结果,并将其纳入$ \ mathbb {r}^d $,非词性双线图的不存在,以及将嵌入到$ \ \ m mathbb {r}^d $中的研究,例如,如空间图的同类性。

Given a space X we study the topology of the space of embeddings of X into $\mathbb{R}^d$ through the combinatorics of triangulations of X. We give a simple combinatorial formula for upper bounds for the largest dimension of a sphere that antipodally maps into the space of embeddings. This result summarizes and extends results about the nonembeddability of complexes into $\mathbb{R}^d$, the nonexistence of nonsingular bilinear maps, and the study of embeddings into $\mathbb{R}^d$ up to isotopy, such as the chirality of spatial graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源