论文标题

几乎没有歧管的图像识别

Few-shot Image Recognition with Manifolds

论文作者

Das, Debasmit, Moon, J. H., Lee, C. S. George

论文摘要

在本文中,我们将传统的少量学习(FSL)问题扩展到无法访问源域数据但只有类原型形式的高级信息时的情况。 FSL问题的这种有限的信息设置值得引起很多关注,因为它暗示了隐私保护对源域数据的无法访问,但以前很少解决。由于培训数据有限,我们通过假设所有类原型在结构上排列在歧管上,提出了针对该FSL问题的非参数方法。因此,我们通过将几种样品投射到周围阶层所在的子空间的平均值上来估算新型级原型位置。在分类过程中,我们再次通过在类型原型构建的图上诱导马尔可夫链来利用类别的结构排列。与传统的基于邻居的欧几里得距离相比,使用马尔可夫链获得的这种歧管距离有望产生更好的结果。为了评估我们提出的框架,我们已经在两个图像数据集上对其进行了测试 - 大型成像网和小规模但细粒度的Cub-200。我们还研究了参数灵敏度,以更好地了解我们的框架。

In this paper, we extend the traditional few-shot learning (FSL) problem to the situation when the source-domain data is not accessible but only high-level information in the form of class prototypes is available. This limited information setup for the FSL problem deserves much attention due to its implication of privacy-preserving inaccessibility to the source-domain data but it has rarely been addressed before. Because of limited training data, we propose a non-parametric approach to this FSL problem by assuming that all the class prototypes are structurally arranged on a manifold. Accordingly, we estimate the novel-class prototype locations by projecting the few-shot samples onto the average of the subspaces on which the surrounding classes lie. During classification, we again exploit the structural arrangement of the categories by inducing a Markov chain on the graph constructed with the class prototypes. This manifold distance obtained using the Markov chain is expected to produce better results compared to a traditional nearest-neighbor-based Euclidean distance. To evaluate our proposed framework, we have tested it on two image datasets - the large-scale ImageNet and the small-scale but fine-grained CUB-200. We have also studied parameter sensitivity to better understand our framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源