论文标题

使用SAR图像和神经网络的GPS贬值导航

GPS-Denied Navigation Using SAR Images and Neural Networks

论文作者

White, Teresa, Wheeler, Jesse, Lindstrom, Colton, Christensen, Randall, Moon, Kevin R.

论文摘要

无人驾驶汽车(UAV)通常依靠GP进行导航。但是,GPS信号的功率非常低,很容易被堵塞或以其他方式破坏。本文介绍了一种使用合成孔径雷达(SAR)系统的数据开始时确定在GPS有限时期内存在的导航误差的方法。这是通过将在线生成的SAR图像与获得的参考图像进行比较来完成的。使用卷积神经网络学习并利用相对于参考图像的扭曲,以恢复初始导航误差,该导航误差可用于在整个合成孔径中恢复真正的飞行轨迹。提出的神经网络方法能够学会预测模拟和真实SAR图像数据的初始错误。

Unmanned aerial vehicles (UAV) often rely on GPS for navigation. GPS signals, however, are very low in power and easily jammed or otherwise disrupted. This paper presents a method for determining the navigation errors present at the beginning of a GPS-denied period utilizing data from a synthetic aperture radar (SAR) system. This is accomplished by comparing an online-generated SAR image with a reference image obtained a priori. The distortions relative to the reference image are learned and exploited with a convolutional neural network to recover the initial navigational errors, which can be used to recover the true flight trajectory throughout the synthetic aperture. The proposed neural network approach is able to learn to predict the initial errors on both simulated and real SAR image data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源