论文标题
MINLP的进步以识别节能蒸馏配置
Advances in MINLP to Identify Energy-efficient Distillation Configurations
论文作者
论文摘要
在本文中,我们描述了基于第一个基于混合企业的非线性编程(MINLP)解决方案方法,该方法成功地识别了给定分离的最节能蒸馏构序序列。当前的序列设计策略在很大程度上是启发式的。此处提出的严格方法可以帮助通过分离过程减少大量的能源消耗和随之而来的温室气体排放,在该过程中估计仅粗蒸馏每年每年消耗6.9次四倍能源。解决此问题的挑战来自大量可行的配置序列,并且由于管理方程式包含非召唤分数项。我们取得了一些进步,以解决这些问题。首先,我们使用比以前的配方更紧的公式对离散选择进行建模。其次,我们强调了部分分数分解以及重新印度线性化技术(RLT)的使用。第三,我们获得了各种特殊结构的凸面结果。第四,我们开发了新的方法来离散MINLP。最后,我们提供了计算证据,以证明我们的方法显着优于最新技术。
In this paper, we describe the first mixed-integer nonlinear programming (MINLP) based solution approach that successfully identifies the most energy-efficient distillation configuration sequence for a given separation. Current sequence design strategies are largely heuristic. The rigorous approach presented here can help reduce the significant energy consumption and consequent greenhouse gas emissions by separation processes, where crude distillation alone is estimated to consume 6.9 quads of energy per year globally. The challenge in solving this problem arises from the large number of feasible configuration sequences and because the governing equations contain non-convex fractional terms. We make several advances to enable solution of these problems. First, we model discrete choices using a formulation that is provably tighter than previous formulations. Second, we highlight the use of partial fraction decomposition alongside Reformulation-Linearization Technique (RLT). Third, we obtain convex hull results for various special structures. Fourth, we develop new ways to discretize the MINLP. Finally, we provide computational evidence to demonstrate that our approach significantly outperforms the state-of-the-art techniques.