论文标题
定量的Birman-Menasco有限定理及其在交叉数字中的应用
A quantitative Birman-Menasco finiteness theorem and its application to crossing number
论文作者
论文摘要
伯曼·曼斯科(Birman-Menasco)证明,有一个有限的结具有给定的属和辫子指数。我们给出了Birman-Menasco有限定理的定量版本,这是对属和辫子指数的交叉数量的估计。这具有交叉数字的各种应用,例如连接总和或卫星的交叉数。
Birman-Menasco proved that there are finitely many knots having a given genus and braid index. We give a quantitative version of Birman-Menasco finiteness theorem, an estimate of the crossing number of knots in terms of genus and braid index. This has various applications of crossing numbers, such as, the crossing number of connected sum or satellites.