论文标题

磁场中强烈相互作用的电子的确切可解决的模型

An Exactly Solvable Model for Strongly Interacting Electrons in a Magnetic Field

论文作者

Anand, Abhishek, Jain, Jainendra K, Sreejith, G J

论文摘要

强烈相互作用颗粒的状态对物理学具有根本兴趣,并且可以产生异国情调的现象和拓扑结构。我们在这里考虑磁场中的二维电子,并且从限制到最低LL的标准实践中,引入了一种模型的短距离相互作用,与回旋能量相比,该相互作用无限强。我们证明,该模型将自己适合于地面的精确解决方案,并以任意填充因子为$ν<1/2p $的激发状态,并在形式的分数$ν= n/(2pn+ 1)$的分数下产生分数量子厅效应,n和p​​是整数。我们模型的分数量子霍尔状态具有许多拓扑特性,与相应的库仑接地状态在最低的兰道水平上,例如边缘物理学和激发的分数电荷。

States of strongly interacting particles are of fundamental interest in physics, and can produce exotic emergent phenomena and topological structures. We consider here two-dimensional electrons in a magnetic field, and, departing from the standard practice of restricting to the lowest LL, introduce a model short-range interaction that is infinitely strong compared to the cyclotron energy. We demonstrate that this model lends itself to an exact solution for the ground as well as excited states at arbitrary filling factors $ν<1/2p$ and produces a fractional quantum Hall effect at fractions of the form $ν=n/(2pn+ 1)$, where n and p are integers. The fractional quantum Hall states of our model share many topological properties with the corresponding Coulomb ground states in the lowest Landau level, such as the edge physics and the fractional charge of the excitations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源