论文标题
示例性的自然图像比最先进的特征可视化更好地解释了CNN激活
Exemplary Natural Images Explain CNN Activations Better than State-of-the-Art Feature Visualization
论文作者
论文摘要
特征可视化(例如合成最大激活图像)是一种广泛使用的解释方法,可以更好地了解卷积神经网络(CNN)的信息处理。同时,人们担心这些可视化可能不能准确代表CNN的内部工作。在这里,我们测量了多少极其激活的图像可以帮助人类预测CNN激活。使用控制良好的心理物理范式,我们比较了Olah等人的合成图像的信息性。 (2017)具有简单的基线可视化,即模范自然图像,也强烈激活特定特征图。鉴于合成图像或自然参考图像,人参与者选择两个查询图像中的哪个导致强烈的阳性激活。实验旨在最大化参与者的性能,并且是第一个探测中间体而不是最终层表示的人。我们发现合成图像确实提供了有关特征图激活的有用信息($ 82 \ pm4 \%$ $精度;机会为$ 50 \%$)。但是,自然图像(最初是基线 - 均优于合成图像的宽距较宽($ 92 \ pm2 \%$)。此外,参与者对自然图像更快,更有信心,而对特征可视化的解释性的主观印象混合在一起。对于专家和外行参与者以及手工和随机挑选的特征可视化,自然图像的较高信息性具有大多数层的信息。即使只给出了一个参考图像,合成图像也提供了比自然图像更少的信息($ 65 \ pm5 \%$ vs. $ 73 \ pm4 \%$ $)。总而言之,与自然图像相比,来自流行特征可视化方法的合成图像在评估CNN激活方面的信息意义要少得多。我们认为可视化方法应该在此基线上有所改善。
Feature visualizations such as synthetic maximally activating images are a widely used explanation method to better understand the information processing of convolutional neural networks (CNNs). At the same time, there are concerns that these visualizations might not accurately represent CNNs' inner workings. Here, we measure how much extremely activating images help humans to predict CNN activations. Using a well-controlled psychophysical paradigm, we compare the informativeness of synthetic images by Olah et al. (2017) with a simple baseline visualization, namely exemplary natural images that also strongly activate a specific feature map. Given either synthetic or natural reference images, human participants choose which of two query images leads to strong positive activation. The experiments are designed to maximize participants' performance, and are the first to probe intermediate instead of final layer representations. We find that synthetic images indeed provide helpful information about feature map activations ($82\pm4\%$ accuracy; chance would be $50\%$). However, natural images - originally intended as a baseline - outperform synthetic images by a wide margin ($92\pm2\%$). Additionally, participants are faster and more confident for natural images, whereas subjective impressions about the interpretability of the feature visualizations are mixed. The higher informativeness of natural images holds across most layers, for both expert and lay participants as well as for hand- and randomly-picked feature visualizations. Even if only a single reference image is given, synthetic images provide less information than natural images ($65\pm5\%$ vs. $73\pm4\%$). In summary, synthetic images from a popular feature visualization method are significantly less informative for assessing CNN activations than natural images. We argue that visualization methods should improve over this baseline.