论文标题
研究球体核上的高能质子诱导的反应:对均衡前激子模型的影响
Investigating High-Energy Proton-Induced Reactions on Spherical Nuclei: Implications for the Pre-Equilibrium Exciton Model
论文作者
论文摘要
许多基于加速器的同位素生产设施,由于高强度束功能和高范围的高能质子带来的同位素产生的较大多样性,因此使用了100至200 meV质子梁。但是,由于不同的反应模式与缺乏现有的指导横截面数据之间的相互作用,因此在这些能量处的核反应模型可能具有挑战性。在劳伦斯·伯克利,洛斯阿拉莫斯和布鲁克黑文国家实验室中,已经形成了三杆lab的合作,以通过表征与已建立和新颖的放射性病的产生相关的带电粒子核反应来解决这些复杂性。在首届协作实验中,在Brookhaven Linac同位素生产商(E $ _P $ = 200 MEV)和Los Alamos同位素生产设施(E $ _P $ = 100 meV)以测量$^{93} $ nb(p nb(p nb nb nb),将测得的横截面结果与文献数据以及核模型代码,COH,Empire和Alice的默认计算进行了比较。我们开发了一个标准化程序,该程序确定反应模型参数,该参数以物理合理的方式最能重现最突出的反应通道。该过程的主要重点是确定前平衡两组分激子模型的最佳参数化。这项建模研究揭示了与默认值相比,当前质子质子能量(e $ _p $ = 20-60 meV)的内部过渡速率相对降低的趋势。这项工作的结果对同位素生产必不可少的计划,执行和分析起了重要作用。
A number of accelerator-based isotope production facilities utilize 100- to 200-MeV proton beams due to the high production rates enabled by high-intensity beam capabilities and the greater diversity of isotope production brought on by the long range of high-energy protons. However, nuclear reaction modeling at these energies can be challenging because of the interplay between different reaction modes and a lack of existing guiding cross section data. A Tri-lab collaboration has been formed among the Lawrence Berkeley, Los Alamos, and Brookhaven National Laboratories to address these complexities by characterizing charged-particle nuclear reactions relevant to the production of established and novel radioisotopes. In the inaugural collaboration experiments, stacked-targets of niobium foils were irradiated at the Brookhaven Linac Isotope Producer (E$_p$=200 MeV) and the Los Alamos Isotope Production Facility (E$_p$=100 MeV) to measure $^{93}$Nb(p,x) cross sections between 50 and 200 MeV. The measured cross-section results were compared with literature data as well as the default calculations of the nuclear model codes TALYS, CoH, EMPIRE, and ALICE. We developed a standardized procedure that determines the reaction model parameters that best reproduce the most prominent reaction channels in a physically justifiable manner. The primary focus of the procedure was to determine the best parametrization for the pre-equilibrium two-component exciton model. This modeling study revealed a trend toward a relative decrease for internal transition rates at intermediate proton energies (E$_p$=20-60 MeV) in the current exciton model as compared to the default values. The results of this work are instrumental for the planning, execution, and analysis essential to isotope production.